

Making Isometric Social Real-Time
Games with HTML5, CSS3, and

Javascript

Mario Andrés Pagella

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Making Isometric Social Real-Time Games with HTML5, CSS3, and Javascript
by Mario Andrés Pagella

Copyright © 2011 Mario Andrés Pagella. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St. Laurent
Production Editor: Kristen Borg
Copyeditor: Nancy Kotary
Proofreader: O’Reilly Production Services

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Making Isometric Social Real-Time Games with HTML5, CSS3, and Javascript, the
image of coots, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30475-1

[LSI] [2011-09-02]

1314992016

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

To my mother. May God keep you safe until we
meet once again.

Table of Contents

Preface . vii

1. Graphics Foundations: Canvas and Sprites . 1
Working with the canvas Object 1
Creating Smooth Animations 9
Working with Sprites 13
What’s at that Pixel? 17

Dealing with Transparency 21
Choosing a Rendering Method for Our Graphics 29

2. Making It Isometric . 45

3. Interface Considerations . 63
GUI Design and Interaction in Web Games 63
Implementing the GUI 65

4. HTML5 Sound and Processing Optimization . 81
Adding Sound with the Audio Element 81
Managing Computationally Expensive Work with the Web Workers API 91
Local Storage and Session Storage 99

5. Connecting the Game to People . 105
Cheat Prevention and Server-Side Operations 105
The Path to the Final Game 111
Polishing the Game 124
Adding a Social Networking Layer Using Facebook 130

v

Preface

Addictive, frustrating. Fun, boring. Engaging, repetitive. Casual, demanding.

These words may contradict each other, but they express the roller coaster of sentiments
felt by real-time strategy games players like me. I remember spending countless hours
playing brilliant games such as EA/Maxis’s SimCity and SimCity 2000, Chris Sawyer’s
Transport Tycoon, or Bullfrog Productions’ Theme Hospital, wondering why only a
few of my friends (usually the geekiest ones) had played them.

Today, I see children and teenagers, grandmothers and soccer moms, and frat boys and
computer geeks playing games such as Zynga’s FarmVille or CityVille, Playdom’s Social
City, or Playfish’s MyEmpire for hours, ignorant of the existence of those games’
predecessors: a golden age of isometric real-time games that they’ll probably never play.

What changed?

This recent surge of isometric real-time games was caused partly by Zynga’s incredible
ability to “keep the positive things and get rid of the negative things” in this particular
genre of games, and partly by a shift in consumer interests. They took away the frus-
tration of figuring out why no one was “moving to your city” (in the case of SimCity)
and replaced it with adding friends to be your growing neighbors. They took advantage
of Facebook’s social capabilities to change the nature of gaming. They made the boring
parts more interactive by letting you not only place the objects, but also build them
and manually collect the points they generate. After a while—usually a few weeks—
when the game starts to feel repetitive, they present you with quests and make you
interact with your friends. Finally, the constructions that you build will remain, gen-
erating profits and points even if you are not playing the game. (This concept is usually
referred to in the industry as asynchronous play or asynchronous game mechanics.)

When you eliminate frustration, boredom, and repetition (the three bad aspects of
isometric real-time games), you end up with an addictive, fun, engaging, and casual (or
demanding, depending on how you want to play it) genre of games that—thanks to its
social-related progress requirements—can go viral in a heartbeat. No wonder Zynga’s
valuation at the time of writing is $10 billion (surpassing Electronic Arts (EA), one of
the biggest “traditional” game publishers in the world), or that Playdom was purchased
by Disney for 760 million dollars. Coming up with the right values for each variable of

vii

the gameplay equation for your own game is extremely hard, but when you manage to
get everything right, the very nature of this genre of social games can make it an instant
hit.

The interfaces of isometric social real-time games are simple compared with conven-
tional real-time strategy games: a “living” map editor where you can place objects on
a matrix of tiles, which we’ll usually refer to as “the grid.” Depending on the object,
which in our case will be buildings, some of them may generate P amount of points
every T amount of time. So even when we’re not playing the game, buildings will keep
generating points.

As the final project in this book, we’re going to develop a game called “Tourist Resort”
in which users will have to build a resort complex, decorate it with trees, and place
various shops. Each shop will generate N amount of profit every T amount of time; this
profit will then allow them to buy more buildings.

The Rise of HTML5
While social isometric game systems were improving, the technologies available to
build them were also changing.

For many years, the tools available to develop rich and highly interactive online games
that can run within web browsers remained the same; Virtual Reality Modeling Lan-
guage (VRML), Java Applets, Macromedia Shockwave, Adobe Flash, Microsoft Silver-
light, Unity3D, and others all meant using third-party and proprietary solutions, and
if users wanted to use those applications, they had to download and install browser
add-ons. Even worse was that developers also had to pay for really expensive IDEs
(integrated development environments) to develop them.

Web technologies such as HTML, CSS, and JavaScript could not provide users with
the same quality end-user experience that could be achieved with other tools such as
Adobe Flash. Browsers—particularly with JavaScript—were slow; they lacked support
for native video, audio, and local storage; and some of them, such as Internet Explorer,
neither supported transparencies in PNG images nor provided developers with tools
to perform even basic bit-lock image transfers. They weren’t ready for anything but the
simplest of games.

Thankfully, as time went by, most major web browsers started to implement the latest
version of the HTML and CSS standards: HTML5 and CSS3. At the same time, they
greatly improved the runtime performance of JavaScript applications. Nowadays, the
most recent versions of modern browsers such as Mozilla Firefox, Apple Safari, Google
Chrome, Opera, and Microsoft Internet Explorer 9—as well as the browsers included
in smart devices such as the iPhone, Blackberry phones, and WebOS-based and
Android-based phones—have already implemented most of the technologies that we
need in order to develop a full-featured video game.

viii | Preface

What You Need to Know
This book doesn’t provide a definitive guide to HTML5, CSS3, or JavaScript. It assumes
that you have at least a basic knowledge of how to work with all of those languages.
Instead, throughout the different sections of this book, we discuss how to apply these
technologies in the most performance-efficient way so that you can develop and launch
a game that works today in any smartphone, tablet, or PC with a web browser that
supports HTML5.

This book is intended for web developers trying to do game development or for game
developers trying to adapt their knowledge to web development.

Our main approach for the development of an isometric social real-time strategy game
will be to aim at the lowest common denominator: mobile devices. The rationale for
this approach is that if it works on a mobile device at a decent speed, it will also work
on more high-end devices such as personal computers.

Code Examples
All of the code and other supporting files for examples in this book are available at
https://github.com/andrespagella/Making-Isometric-Real-time-Games.

Development and Debugging Tools
Even if you’re an experienced developer, a few key tools can be helpful. Although you
could implement these examples with a simple text editor (like Notepad or TextEdit)
and any HTML5-capable web browser, if you intend to do any serious work, it would
be nice to have syntax highlighting, a JavaScript console, a JavaScript debugger, and a
web inspector. I strongly recommend using an editor that supports (or that can be
extended to support) JavaScript, HTML, and CSS, such as vim or emacs.

The JavaScript Console, JavaScript debugger, and the web inspector are tools that can
be used to locate and track problems, routines, or objects. Luckily for us, most modern
browsers also include the three of them:

Mozilla Firefox
Inside the Tools menu, you’ll find JavaScript Console and Inspect; I strongly rec-
ommend installing Firebug, which is an extension made for advanced web devel-
opment that also includes a JavaScript debugger and an HTML, CSS, and DOM
inspector, along with many other features.

Internet Explorer
Open the Developer Tools by pressing F12. These include a JavaScript console that
allows you to view the page in different “document modes” to see how your site
will handle visitors using IE5, IE7, IE8, and so on.

Preface | ix

https://github.com/andrespagella/Making-Isometric-Real-time-Games

Google Chrome
If you access the View menu (in OSX) or click on the little wrench icon that is
usually located right next to the address bar, then go to the Developer menu, you
will see JavaScript Tools and JavaScript Console. Both of them are toolsets included
in most WebKit-based browsers.

Safari
The Advanced tab of the Preferences includes a checkbox at the bottom for “Show
Develop menu in menu bar.” Alternately, in OS X, you can enable the Develop
menu by opening a Terminal window and typing defaults write com.apple.Safari
IncludeDebugMenu 1. Another approach is to edit the Preferences.plist file and
add the following line before the </dict> and </plist> XML closing tags: <key>
IncludeDebugMenu</key><true/>. In OS X, the Preferences.plist file is usually located
in one of the following directories, depending on the version of your operating
system:

• C:\Documents and Settings\%USER%\Application Data\Apple Computer\Safari,
where %USER% is your account.

• C:\Users\%USER%\AppData\Roaming\Apple Computer\Safari, where %USER% is
your account.

In Microsoft Windows, you can edit the Safari shortcut to add /enableDebugMenu
right next to the Safari.exe path.

Opera 10
Opera also includes a great debugging utility and web inspector called Dragonfly.
To learn more, refer to the official Opera Dragonfly website: http://www.opera.com/
dragonfly/.

Notes on Game Design
Game design is one of the most important aspects (if not the most important aspect)
of game development: no one wants to play a boring game. In this genre of social real-
time strategy games, it is very important to engage the user not only by providing a
good user experience and fun gameplay, but also by heavily integrating the game into
the user’s social network and experience.

Don’t forget that the main appeal of these sort of games—which appear simple at first
glance—is to make the users compete with their friends (“I have a bigger/nicer city than
yours”). And there’s no better and more convincing advertising than recommendations
from your own circle of friends.

You also need to be careful and responsible about how you interact with users’ social
connections. Getting banned by the social network itself (for example, Facebook)
would be a disaster, but even before that happened, the application could get blocked
or flagged as spam by players.

x | Preface

http://www.opera.com/dragonfly/
http://www.opera.com/dragonfly/

Game design is a far broader subject than can be covered here. An excellent book on
the blurring of boundaries of game design with web applications is Gamification by
Design by Gabe Zichermann and Christopher Cunningham (O’Reilly).

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

Preface | xi

http://oreilly.com/catalog/0636920014614
http://oreilly.com/catalog/0636920014614

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Making Isometric Social Real-Time Games
with HTML5, CSS3, and Javascript by Mario Andrés Pagella (O’Reilly). Copyright 2011
Mario Andrés Pagella, 978-1-449-30475-1.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/9781449304751

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

xii | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://oreilly.com/catalog/9781449304751
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Thank you to my fiancée Regina, my father Rubén, my family, my closest friends, and
my colleagues. To everyone at Minor Studios, especially CEO Martín Repetto and
Xavier Amado. I’d also like to thank Simon St.Laurent, my incredibly helpful editor;
Shelley Powers, for her very insightful technical review; and everyone else at O’Reilly
who made this possible.

Preface | xiii

http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Graphics Foundations:
Canvas and Sprites

HTML5’s canvas element makes it much easier to create complex graphic games, of-
fering far more flexibility and speed than older approaches that relied on moving images
around with the Document Object Model (DOM). Canvas lets you draw on an area of
the screen directly with JavaScript, letting you apply traditional game graphics
approaches in a web context. Though it’s a recent addition to the HTML universe,
canvas is widely supported on newer desktop and mobile browsers.

Working with the canvas Object
The canvas element allows us to define an extremely fast drawable region on the screen
that can be controlled using JavaScript with pixel-level accuracy. However, canvas
works in immediate mode. Unlike Scalable Vector Graphics (SVG, not covered in this
book), the calls that we make to the HTML5 Canvas API draw the graphics directly in the
canvas, without holding any reference to them once they are displayed. If we want to
move our graphics 10 pixels to the right, we need to clear the display and redraw them
using the new coordinates. Later on, we discuss a technique called “adaptive tile re-
fresh” that avoids having to clear the whole display just to modify a small part of the
canvas.

You can look at the canvas object as if it were a piece of paper; you have many crayons
(among other tools) that you can use to draw things on it. So if, for example, you want
to draw a red line, grab the red crayon and draw the line. If you want to draw a green
line, grab the green crayon. Same thing goes for your drawing “style.” If you want to
draw a 45° line that goes from the top left to the bottom right, you can either draw it
without moving the paper at all, or tilt the paper 45° to the right and draw a straight
line from the top to the bottom. (Obviously, the first approach is more efficient.)

1

Accessing the HTML5 Canvas API is pretty easy. First, add the new HTML5 canvas
tag to your page and then assign an id attribute to it:

<canvas id="game" width="100" height="100">
 Your browser doesn't include support for the canvas tag.
</canvas>

The text inside the canvas tag will be shown to the browsers that do not support the
object. Later, you will learn how to discover and handle those sorts of incompatibilities
more efficiently using a JavaScript library called Modernizr.

You need to specify the width and height attributes inside the canvas
tag. Even though you can force canvas to a certain width and height with
CSS, when you reference the object using JavaScript, it will return the
default size (300×150 pixels), completely overriding any values that you
may have assigned via CSS. However, you can modify the width and
height of an HTML Canvas object dynamically in JavaScript.

In order to start using the HTML5 Canvas API, we just need to reference the canvas
tag by using its id attribute value (myCanvas), which will allow us to get a reference to
the 2D drawing context. (The “3D Context” is WebGL, which is not covered in this
book.)

window.onload = function () {
 var canvas = document.getElementById('game');
 var c = canvas.getContext('2d');
}

Alternatively, you can create an HTML5 Canvas object dynamically:

window.onload = function () {
 var canvas = document.createElement('canvas');
 var c = canvas.getContext('2d');
}

In the previous example code, the reference to the 2D drawing context is stored in the
c variable (in many other examples, this variable might be called ctx). All further calls
to the canvas API will be done through this variable. As an initial example, we’re going
to work on the very first thing that users will see when they load our game: The Title
Screen. Later on, we’re going to extend it to support the preloading of resources such
as images or sounds.

Our title screen, which will be displayed throughout the entire browser window, will
consist of an image showing the logo of our game and a text below it with the phrase
“Click or tap the screen to start the game.” When you click on the browser window,
the title screen will smoothly fade to white.

In order to get started with this, we need to add the basic HTML code that will support
the game. In most cases, the page is going to look like a conventional HTML5 page:

2 | Chapter 1: Graphics Foundations: Canvas and Sprites

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <title>Example 1 - Title Screen</title>

 <script>
 // Javascript code goes here
 </script>
 <style type="text/css" media="screen">
 html { height: 100%; overflow: hidden }
 body {
 margin: 0px;
 padding: 0px;
 height: 100%;
 }
 </style>

 </head>
 <body>
 <canvas id="game" width="100" height="100">
 Your browser doesn't include support for the canvas tag.
 </canvas>
 </body>
</html>

The small CSS block in the previous code allows us to force the page to be 100 percent
of the height of the window, and overflow: hidden prevents vertical and horizontal
scrollbars from showing up if we exceed the visible area on the screen.

Now that our page template is complete, we can start using the HTML5 Canvas API
by adding the following JavaScript code inside the <script> tag of our page:

window.onload = function () {
 var canvas = document.getElementById('game');

 // Force canvas to dynamically change its size to
 // the same width/height as the browser window
 canvas.width = document.body.clientWidth;
 canvas.height = document.body.clientHeight;

 var c = canvas.getContext('2d');

 // Fill the screen with a black background
 c.fillStyle = '#000000';
 c.fillRect (0, 0, canvas.width, canvas.height);

 var phrase = "Click or tap the screen to start the game";
 c.font = 'bold 16px Arial, sans-serif';
 c.fillStyle = '#FFFFFF';
 c.fillText (phrase, 10, 30);
}

Let’s go through this code step by step.

Working with the canvas Object | 3

When we added the canvas tag to the HTML code, we defined the height and the
width attributes with the value 100, meaning that the canvas should be 100 pixels tall
and 100 pixels wide. However, we wanted our title screen to be as tall and wide as the
browser window, which is why we needed to override those two values dynamically by
using document.body.clientWidth to indicate the width and document.body.client
Height to indicate the height.

After we get a reference to the 2D context, we make a call to an HTML5 Canvas API
function called fillStyle(). At the beginning of this chapter, we made a comparison
of the canvas to a piece of paper with crayons of different colors; this is the same sce-
nario. What the fillStyle() call is doing is to set the color to black, and after that it
draws a filled rectangle starting at position (0,0) and ending at position (can
vas.width, canvas.height), thus covering the entire browser window. (Remember that
we set a new size for the canvas object in the last step.)

Then it sets the phrase that we’re going to use, selects a font family (in this case, Arial
with a fallback to sans-serif, which works exactly as in CSS) and size, and changes the
color again, this time to white. The fillText() call prints the phrase on the position
10, 30 (10 pixels starting on the left, 30 pixels starting on the top).

Figure 1-1 shows the result of that code.

Figure 1-1. Initial screen for the game; built-in canvas

4 | Chapter 1: Graphics Foundations: Canvas and Sprites

The HTML5 Canvas API also includes a very useful method called measure
Text(phrase) that returns the width (in pixels) of the phrase parameter. We also need
to be careful to measure the text after we set the size of the font, not before. Using
measureText(), we can center the text on the screen:

var phrase = "Click or tap the screen to start the game";
c.font = 'bold 16px Arial, sans-serif';
var mt = c.measureText(phrase);
var xcoord = (canvas.width / 2) - (mt.width / 2);
c.fillStyle = '#FFFFFF';
c.fillText (phrase, xcoord, 30);

So far we have painted the canvas black, and we specified only hexadecimal color values
as the parameter for the fillStyle() method. Other styles supported by canvas are:

• Color keywords such as ‘red’ or ‘black’

• RGB values in the format rgb(Red, Green, Blue)

• RGBA values in the format rgba(Red, Green, Blue, Alpha), where the Alpha pa-
rameter (the transparency) goes from 0.0 to 1.0

• HSL values in the format hsl(Percentage, Percentage, Percentage)

• HSLA values in the format hsla(Percentage, Percentage, Percentage, Alpha)

If solid colors aren’t enough for you, canvas also makes it possible to:

• Display a linear gradient by using createLinearGradient()

• Display a radial gradient by using createRadialGradient()

• Display an image/canvas or video pattern by using createPattern()

In order to change the example so that it displays a nice blue gradient instead of a black
background, we can use the following code:

var grd = c.createLinearGradient(0, 0, canvas.width, canvas.height);
grd.addColorStop(0, '#ceefff');
grd.addColorStop(1, '#52bcff');

c.fillStyle = grd;
c.fillRect(0, 0, canvas.width, canvas.height);

Displaying images on the canvas is just as easy as displaying text using the draw
Image() method:

var img = new Image();
img.src = 'image.png';
c.drawImage(img, 0, 0, img.width, img.height);

In order to use the img.width and img.height attributes, the img.ready
State property must be equal to COMPLETE. In the final game implemen-
tation, we’ll take care of this with a resource loader The resource loader
can be found within the game.js folder of the code repository (the file is
called resourceLoader.js).

Working with the canvas Object | 5

The drawImage() method of the HTML5 Canvas API has three different implementa-
tions. Although we’ll be covering most of them in the following sections, a more de-
tailed document explaining each implementation can be found here: http://www.w3
.org/TR/2dcontext/#dom-context-2d-drawimage.

If we want to make our image twice as big as the original size, we just need to multiply
its size by 2 in the following way:

var img = new Image();
img.src = 'image.png';
c.drawImage(img, 0, 0, img.width * 2, img.height * 2);

In our case, we’re going to use a file provided in the official code repository within the
img directory, called logo.png. We’re also going to present the image so that it fills 50%
of the browser window while maintaining its width/height aspect ratio so that it can
be displayed gracefully in mobile phones or tablets as well as conventional desktop
computers.

To present the title screen, make a function called showIntro() that displays the blue
gradient, the image, and the text:

function showIntro () {
 var phrase = "Click or tap the screen to start the game";

 // Clear the canvas
 c.clearRect (0, 0, canvas.width, canvas.height);

 // Make a nice blue gradient
 var grd = c.createLinearGradient(0, canvas.height, canvas.width, 0);
 grd.addColorStop(0, '#ceefff');
 grd.addColorStop(1, '#52bcff');

 c.fillStyle = grd;
 c.fillRect(0, 0, canvas.width, canvas.height);

 var logoImg = new Image();
 logoImg.src = '../img/logo.png';

 // Store the original width value so that we can keep
 // the same width/height ratio later
 var originalWidth = logoImg.width;

 // Compute the new width and height values
 logoImg.width = Math.round((50 * document.body.clientWidth) / 100);
 logoImg.height = Math.round((logoImg.width * logoImg.height) / originalWidth);

 // Create an small utility object
 var logo = {
 img: logoImg,
 x: (canvas.width/2) - (logoImg.width/2),
 y: (canvas.height/2) - (logoImg.height/2)
 }

6 | Chapter 1: Graphics Foundations: Canvas and Sprites

http://www.w3.org/TR/2dcontext/#dom-context-2d-drawimage
http://www.w3.org/TR/2dcontext/#dom-context-2d-drawimage

 // Present the image
 c.drawImage(logo.img, logo.x, logo.y, logo.img.width, logo.img.height);

 // Change the color to black
 c.fillStyle = '#000000';
 c.font = 'bold 16px Arial, sans-serif';

 var textSize = c.measureText (phrase);
 var xCoord = (canvas.width / 2) - (textSize.width / 2);

 c.fillText (phrase, xCoord, (logo.y + logo.img.height) + 50);
}

Calling the showIntro() function will display the image shown in Figure 1-2.

Figure 1-2. Screenshot of the Example 1-1 title screen

Now that our main “title screen” is ready, let’s work on the routine that makes the
screen fade to white. To accomplish this, we’re going to use a function called fadeTo
White() that will call itself every 30 milliseconds until the entire screen is covered in
white.

If we want to paint an area with a specific opacity, there are two approaches that we
can use:

• Specify a fill color in RGBA or HSLA

• Change the globalAlpha parameter in the 2D Context to a value between 0.0
(transparent) and 1.0 (solid)

The globalAlpha parameter (which is the approach that we’ll be using) allows us to
specify with how much opacity elements should be displayed on the screen from that
point on. Once we set an opacity of, for example, 0.5, all other fillRects, fillTexts,
drawImages, and similar calls will be 50% translucent.

Working with the canvas Object | 7

The fadeToWhite() function will look like this:

function fadeToWhite(alphaVal) {
 // If the function hasn't received any parameters, start with 0.02
 var alphaVal = (alphaVal == undefined) ? 0.02 : parseFloat(alphaVal) + 0.02;

 // Set the color to white
 c.fillStyle = '#FFFFFF';
 // Set the Global Alpha
 c.globalAlpha = alphaVal;

 // Make a rectangle as big as the canvas
 c.fillRect(0, 0, canvas.width, canvas.height);

 if (alphaVal < 1.0) {
 setTimeout(function() {
 fadeToWhite(alphaVal);
 }, 30);
 }
}

All that is left for us to do now is to attach the click and resize events. The complete
Example 1-1, shown here, can also be downloaded from the official repository, where
you’ll be able to find it as ex1-titlescreen.html inside the examples folder. For the sake
of brevity, some functions such as fadeToWhite() and showIntro() are empty, as they
were just shown.

Example 1-1. The opening screen

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <title>Example 1 - Title Screen</title>

 <script>
 window.onload = function () {
 var canvas = document.getElementById('myCanvas');
 var c = canvas.getContext('2d');

 var State = {
 _current: 0,
 INTRO: 0,
 LOADING: 1,
 LOADED: 2
 }

 window.addEventListener('click', handleClick, false);
 window.addEventListener('resize', doResize, false);

 doResize();

 function handleClick() {
 State._current = State.LOADING;
 fadeToWhite();

8 | Chapter 1: Graphics Foundations: Canvas and Sprites

 }

 function doResize() {
 canvas.width = document.body.clientWidth;
 canvas.height = document.body.clientHeight;

 switch (State._current) {
 case State.INTRO:
 showIntro ();
 break;
 }
 }

 function fadeToWhite(alphaVal) {
 // ...
 }

 function showIntro () {
 // ...
 }
 }
 </script>
 <style type="text/css" media="screen">
 html { height: 100%; overflow: hidden }
 body {
 margin: 0px;
 padding: 0px;
 height: 100%;
 }
 </style>

 </head>
 <body>
 <canvas id="myCanvas" width="100" height="100">
 Your browser doesn't include support for the canvas tag.
 </canvas>
 </body>
</html>

Although in this case, the animation being performed (the fade to white) is not too
complex, if you run more complex animation examples on a mobile device, you will
probably notice small interruptions in the animation, an effect called “frame skipping.”

Creating Smooth Animations
In any sort of game development, it’s critical to make the most efficient use of resources.
However quickly canvas may be able to draw elements on the screen, we still need to
clear or redraw a large area several times per second; although the game perhaps won’t
feel “jerky” on personal computers, mobile devices such as cell phones or tablets could
struggle to keep up, which would completely ruin the game experience for our players.
(Later in this chapter, you will learn how to dramatically improve performance.)

Creating Smooth Animations | 9

The enormous variety of devices that will be able to play our game means that if we
need to present a simple animation, some devices might be able to show them at 90
frames per second (FPS) while others could be doing only 15 FPS.

Example 1-2 shows a simple test that can tell us approximately how capable a device is.

Example 1-2. Testing device capabilities with canvas

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <title>Canvas Example 2 (FPS Count)</title>

 <script>
 window.onload = function () {
 var canvas = document.getElementById('myCanvas');
 var c = canvas.getContext('2d');

 var fpsArray = [];
 var fpsCount = 0;
 var stopAt = 10;
 var fps = 0;
 var startTime = 0;

 var date = new Date();
 startTime = Math.round(date.getTime() / 1000);

 c.font = '20px _sans';

 draw(startTime);

 function draw (timeStamp) {
 var date = new Date();
 ts = Math.round(date.getTime() / 1000);

 if (timeStamp !== ts) {
 fps = fpsCount;
 fpsCount = 0;
 fpsArray.push(fps);
 } else {
 fpsCount++;
 }

 c.fillStyle = '#000000';
 c.fillRect (0, 0, canvas.width, canvas.height);

 c.fillStyle = '#FFFFFF';
 c.fillText ("TS: " + timeStamp, 10, 20);
 c.fillText ("FPS: " + fps, 10, 40);

 if (timeStamp <= (startTime + stopAt)) {
 setTimeout(function() {
 draw(ts);
 }, 1);

10 | Chapter 1: Graphics Foundations: Canvas and Sprites

 } else {
 showResults(c, canvas);
 }
 }

 function showResults() {
 var mean = 0;
 var sum = 0;

 c.fillStyle = '#FFFFFF';
 c.fillRect (0, 0, canvas.width, canvas.height);

 // sort the samples
 for (var i = 0; i < fpsArray.length; i++) {
 for (var j = fpsArray.length - 1; j > i; j--) {
 if (fpsArray[j - 1] > fpsArray[j]) {
 fpsArray[j - 1] = fpsArray[j];
 }
 }
 }

 // discard the first value, which is usually very low
 fpsArray = fpsArray.slice (1, fpsArray.length);

 for (var i = 0; i < fpsArray.length; i++) {
 sum = sum + fpsArray[i];
 }

 mean = sum / fpsArray.length;

 c.fillStyle = '#000000';
 c.fillText ("MIN: " + fpsArray[0], 10, 20);
 c.fillText ("MAX: " + fpsArray[fpsArray.length - 1], 10, 40);
 c.fillText ("MEAN: " + (Math.round(mean * 10) / 10), 10, 60);
 }
 }
 </script>

 </head>
 <body>
 <canvas id="myCanvas" width="160" height="70" style="border: 1px solid black;">
 Your browser doesn't include support for the canvas tag.
 </canvas>
 </body>
</html>

Example 1-2 repaints the same canvas object as many times as it can per second for 10
seconds, keeping track of the frame rate. You will notice that in this particular example
(at the time of writing this book), Google Chrome and Opera have almost four times
better performance than Firefox, Safari, or IE9. Chrome or Opera aren’t that much
faster than the rest, but there is an artificial limitation in the setTimeout() and setIn
terval() functions. In most browsers, 10 ms (milliseconds) is the minimum value, but
in Chrome and Opera, it is 4 ms. These artificial limitations are set to prevent the

Creating Smooth Animations | 11

browser from locking up and are defined in the W3C Working Draft (http://www.w3
.org/TR/html5/timers.html).

A more “browser-friendly” approach is to use the requestAnimFrame function (because
the HTML5 spec is still being developed, each browser engine has given this function
its own name). Using requestAnimFrame allows the browser to decide when it is the best
time to show the next frame. For example, if we minimize the browser window and
nothing else depends on the call to requestAnimFrame, the browser could decide to stop
the animation until we restore the window to a visible state.

Inside the examples folder in the code repository of this book, you will find instructions
on how to perform the same task (calculating FPS) using both approaches (ex2-fps-
requestAnimationFrame.html and ex2-fps-setTimeout.html). You can track the progress
of timing control for script-based animations in the W3C Editor’s Draft (see
http://webstuff.nfshost.com/anim-timing/Overview.html and http://www.w3.org/TR/
2011/WD-animation-timing-20110602/). The ex2-fps-requestAnimationFrame.html
file implements a shim, a routine that checks whether a given function is implemented
by the web browser—and if it isn't, falls back to another, developed by Paul Irish (http:
//paulirish.com). It checks whether the browser currently supports requestAnim
Frame() and falls back to setTimeout() if it doesn't.

In the following examples and throughout our game, we will stick with the setTime
out() approach, as it gives us more fine-grained control over when to call the next
frame. For example, instead of calling the setTimeout() function every 1 or 10 ms, we
might decide that it’d be more efficient to call it every 500 or 2000 ms. Although at the
time of writing this book, it is not completely supported across all browsers, in the
future the final requestAnimFrame() function will allow us to specify a time parameter.

requestAnimFrame is capped at 60 FPS.

As we have seen so far, depending on the capabilities and the performance of the device
(among other factors), we will get a higher or lower FPS—which means that if we base
our animations by the number of frames, the animations will be played faster on some
devices than on others.

Those familiar with PCs in the 1980s may remember the “turbo” button,
which allowed you to change the clock speed of the processor. In the
past, many games and applications were developed to run at a specific
clock speed, so as computers got faster, all the variables in those games,
including the animations, got faster as well, leading to hilarious results.
The button allowed us to “slow down” the computer to support old
applications such as games.

12 | Chapter 1: Graphics Foundations: Canvas and Sprites

http://www.w3.org/TR/html5/timers.html
http://www.w3.org/TR/html5/timers.html
http://webstuff.nfshost.com/anim-timing/Overview.html
http://www.w3.org/TR/2011/WD-animation-timing-20110602/
http://www.w3.org/TR/2011/WD-animation-timing-20110602/
http://paulirish.com
http://paulirish.com

To prevent this variance, we are going to use a “time-based” approach for animations,
in which it doesn’t matter how many FPSs our device can process but will rather allow
us to specify that an animation should be played within a specific time value, ignoring
how many frames that animation actually has.

Working with Sprites
In order to demonstrate this idea, we’re going to use an Sprite class, which loads images
from a sprite sheet. Sprites are individual game textures that may have one (static) or
multiple frames (animated). Usually, in order to optimize load and memory lookup
times, most of the images in our game will be placed in a single (and large) image file
called a sprite sheet. The sprite sheet that we will be using can be seen in Figure 1-3.

Figure 1-3. A simple sprite sheet

The sprite sheet contains 25 graphics grouped in 5 groups of 5 graphics each, which
means that in this case it contains 5 different animations. What we are going to do is
to define that the first animation should last 5 seconds; the second should last 2.5
seconds; the third should last 1.6 seconds; the fourth should last 1.25 seconds; and the
final one should last only 1 second. Example 1-3 shows how to implement this concept.

Example 1-3. Creating a simple animation with a sprite sheet

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <title>Canvas Example 3 (Sprite Animations)</title>

Working with Sprites | 13

 <script charset="utf-8" src="sprite.js"></script>
 <script>
 var fpsCount = 0;
 var fps = 0;
 var startTime = 0;

 var Timer = function() {
 this.date = new Date();
 }

 Timer.prototype.update = function() {
 var d = new Date();
 this.date = d;
 }

 Timer.prototype.getMilliseconds = function() {
 return this.date.getTime();
 }

 Timer.prototype.getSeconds = function() {
 return Math.round(this.date.getTime() / 1000);
 }

 window.onload = function() {
 var canvas = document.getElementById('myCanvas');
 var c = canvas.getContext('2d');

 // Initialize our sprites
 var spritesheet = '../img/sprite1.png';

 var gray = new Sprite(spritesheet, 60, 60, 0, 0, 5, 5000);
 var yellow = new Sprite(spritesheet, 60, 60, 0, 60, 5, 2500);
 var red = new Sprite(spritesheet, 60, 60, 0, 120, 5, 1666);
 var blue = new Sprite(spritesheet, 60, 60, 0, 180, 5, 1250);
 var green = new Sprite(spritesheet, 60, 60, 0, 240, 5, 1000);

 var timer = new Timer();

 c.font = '14px _sans';

 var startTime = timer.getSeconds();
 draw(startTime);

 function draw (timeStamp) {
 timer.update();

 if (timeStamp !== timer.getSeconds()) {
 fps = fpsCount;
 fpsCount = 0;
 } else {
 fpsCount++;
 }

 c.fillStyle = '#FFFFFF';
 c.fillRect (0, 0, canvas.width, canvas.height);

14 | Chapter 1: Graphics Foundations: Canvas and Sprites

 c.fillStyle = '#000000';

 gray.setPosition(40, 60);
 gray.animate(c, timer);
 gray.draw(c);

 yellow.setPosition(80, 100);
 yellow.animate(c, timer);
 yellow.draw(c);

 red.setPosition(120, 140);
 red.animate(c, timer);
 red.draw(c);

 blue.setPosition(160, 180);
 blue.animate(c, timer);
 blue.draw(c);

 green.setPosition(200, 220);
 green.animate(c, timer);
 green.draw(c);

 c.fillText ("Elapsed Time: " + (timeStamp - startTime) + " Seconds", 10, 20);
 c.fillText ("FPS: " + fps, 10, 40);

 setTimeout(function() {
 draw(timer.getSeconds());
 }, 1);
 }
 }
 </script>

 </head>
 <body>
 <canvas id="myCanvas" width="300" height="300" style="border: 1px solid black;">
 Your browser doesn't include support for the canvas tag.
 </canvas>
 </body>
</html>

sprite.js, which we’ll be using in this and other sections, looks like this:

var Sprite = function(src, width, height, offsetX, offsetY, frames, duration) {
 this.spritesheet = null;
 this.offsetX = 0;
 this.offsetY = 0;
 this.width = width;
 this.height = height;
 this.frames = 1;
 this.currentFrame = 0;
 this.duration = 1;
 this.posX = 0;
 this.posY = 0;
 this.shown = true;
 this.zoomLevel = 1;

Working with Sprites | 15

 this.setSpritesheet(src);
 this.setOffset(offsetX, offsetY);
 this.setFrames(frames);
 this.setDuration(duration);

 var d = new Date();
 if (this.duration > 0 && this.frames > 0) {
 this.ftime = d.getTime() + (this.duration / this.frames);
 } else {
 this.ftime = 0;
 }
}

Sprite.prototype.setSpritesheet = function(src) {
 if (src instanceof Image) {
 this.spritesheet = src;
 } else {
 this.spritesheet = new Image();
 this.spritesheet.src = src;
 }
}

Sprite.prototype.setPosition = function(x, y) {
 this.posX = x;
 this.posY = y;
}

Sprite.prototype.setOffset = function(x, y) {
 this.offsetX = x;
 this.offsetY = y;
}

Sprite.prototype.setFrames = function(fcount) {
 this.currentFrame = 0;
 this.frames = fcount;
}

Sprite.prototype.setDuration = function(duration) {
 this.duration = duration;
}

Sprite.prototype.animate = function(c, t) {
 if (t.getMilliseconds() > this.ftime) {
 this.nextFrame ();
 }

 this.draw(c);
}

Sprite.prototype.nextFrame = function() {
 if (this.duration > 0) {
 var d = new Date();

16 | Chapter 1: Graphics Foundations: Canvas and Sprites

 if (this.duration > 0 && this.frames > 0) {
 this.ftime = d.getTime() + (this.duration / this.frames);
 } else {
 this.ftime = 0;
 }

 this.offsetX = this.width * this.currentFrame;

 if (this.currentFrame === (this.frames - 1)) {
 this.currentFrame = 0;
 } else {
 this.currentFrame++;
 }
 }
}

Sprite.prototype.draw = function(c) {
 if (this.shown) {

 c.drawImage(this.spritesheet,
 this.offsetX,
 this.offsetY,
 this.width,
 this.height,
 this.posX,
 this.posY,
 this.width * this.zoomLevel,
 this.height * this.zoomLevel);
 }
}

You’ll be able to find an additional example in the code repository named ex3-sprite-
anim-alt.html. A screenshot of this example can be seen in Figure 1-4.

What’s at that Pixel?
Another great feature of the HTML5 Canvas is that it allows us to access, or set, the
pixel-level information of an image, giving us the possibility of finding out the RGBA
values of a specific pixel inside it. The way to do this is by using the context.getImage
Data() or context.putImageData() methods, which take the following parameters:

context.getImageData(x, y, width, height);

getImageData() returns an object called “ImageData” that contains the following fields:

width (read-only)
The width of the image, expressed in pixels

height (read-only)
The height of the image, expressed in pixels

What’s at that Pixel? | 17

data
A CanvasPixelArray object (an array) containing all the pixels inside the image,
where each pixel is formed by groups of four indexes (R, G, B and A). To access
the blue value of the first pixel, call ImageData.data[2]. To access the red value of
the second pixel, call ImageData.data[4], and so on.

A common iteration going through all the values of an ImageData.data array of the
whole canvas would look like this:

var img = context.getImageData(0, 0, canvas.width, canvas.height);
var idata = img.data; // It's important to save this value
 // to a new array for performance reasons

for (var i = 0, idatal = idata.length; i < idatal; i += 4) {
 var red = idata[i + 0];
 var green = idata[i + 1];
 var blue = idata[i + 2];
 var alpha = idata[i + 3];
}

If instead of accessing image data, you want to insert it into the canvas, you can use:

context.putImageData(ImageData.data, x, y);

or its alternative implementation:

context.putImageData(ImageData.data, x, y, dx, dy, dw, dh);

Figure 1-4. Screenshot of the alternative version of Example 1-3

18 | Chapter 1: Graphics Foundations: Canvas and Sprites

where the parameters would be:

ImageData.data
A CanvasPixelArray object (the pixel array)

x
Origin point of the X axis (upper-left corner) where the CanvasPixelArray will be
painted

y
Origin point of the Y axis (upper-left corner) where the CanvasPixelArray will be
painted

[Optional] dx (“Dirty X”)
The horizontal value at which to place the CanvasPixelArray in the canvas

[Optional] dy (“Dirty Y”)
The vertical value at which to place the CanvasPixelArray in the canvas

[Optional] dw (“Dirty Width”)
Allows you to specify the width of the CanvasPixelArray before being painted onto
the canvas (for example, specifying original width/2 would shrink the image hor-
izontally by 50%)

[Optional] dh (“Dirty Height”)
Allows you to specify the height of the CanvasPixelArray before being painted onto
the canvas (for example, specifying original height/2 would shrink the image ver-
tically by 50%)

In order to locally try the following examples in this chapter, you might
need to pass on a parameter called --allow-file-access-from-files to
the Google Chrome, Firefox, or Opera binaries upon startup in order
to bypass a security constraint concerning the same-origin policy (each
file:// has its own policy).

For more information about this constraint, visit the relevant W3C spec
at http://dev.w3.org/html5/spec/Overview.html#security-with-canvas-el
ements.

Safari doesn’t have this constraint.

Example 1-4 shows how to apply the getImageData() function in a practical context,
where we can use it to detect the color of a particular pixel inside an image.

Example 1-4. Detecting pixel color on a canvas

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <title>Canvas Example 4 (Detecting Colors)</title>

What’s at that Pixel? | 19

http://dev.w3.org/html5/spec/Overview.html#security-with-canvas-elements
http://dev.w3.org/html5/spec/Overview.html#security-with-canvas-elements

 <script>
 window.onload = function () {
 var preview = document.getElementById('preview');
 var r = document.getElementById('r');
 var g = document.getElementById('g');
 var b = document.getElementById('b');
 var a = document.getElementById('a');
 var mx = document.getElementById('mx');
 var my = document.getElementById('my');

 var canvas = document.getElementById('myCanvas');
 canvas.addEventListener('mousemove', move, false);

 var c = canvas.getContext('2d');

 var building = new Image()
 building.src = "../img/cinema.png";

 draw();

 function draw () {
 c.drawImage(building, 0, 0, canvas.width, canvas.height);
 }

 function move (e) {
 mx.innerHTML = e.clientX;
 my.innerHTML = e.clientY;

 var img = c.getImageData(e.clientX, e.clientY, 1, 1);
 var idata = img.data;

 var red = idata[0];
 var green = idata[1];
 var blue = idata[2];
 var alpha = idata[3];

 r.innerHTML = red;
 g.innerHTML = green;
 b.innerHTML = blue;

 a.innerHTML = (alpha > 0) ? alpha : 'Transparent';

 var rgba='rgba(' + red + ', ' + green + ', ' + blue + ', ' + alpha + ')';
 preview.style.backgroundColor =rgba;
 }
 }
 </script>

 <style type="text/css" media="screen">
 body { margin: 0px; padding: 0px; }

 canvas {
 border: 1px solid black;
 float: left;
 }

20 | Chapter 1: Graphics Foundations: Canvas and Sprites

 ul {
 list-style: none;
 margin: 10px 10px 10px 10px;
 padding: 0px;
 float: left;
 }

 ul li { font-weight: bold; }
 ul li span { font-weight: normal; }
 ul li #preview { width: 50px; height: 50px; border: 1px solid black; }
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="300" height="300">
 Your browser doesn't include support for the canvas tag.
 </canvas>

 <div id="preview"></div>
 Red: NULL
 Green: NULL
 Blue: NULL
 Alpha: NULL
 Mouse X: NULL
 Mouse Y: NULL

 </body>
</html>

For more information about these and other pixel manipulation functions, access the
relevant W3C Working Draft section: http://www.w3.org/TR/2dcontext/#pixel-manip
ulation.

Dealing with Transparency
Now that you know how to get the color of a particular pixel in the canvas, including
its alpha value (the transparency), we can solve a very common problem in web devel-
opment that previously could be solved only by using very intricate and inefficient hacks
(involving the use of JavaScript and CSS to click through the transparent areas of a PNG
image, a div, or another element). The problem is that though some areas of the image
are transparent, they still act as a solid rectangle, and thus clicking on the transparent
areas returns a reference to the original of the image instead of returning a reference to
the next solid object below it.

With these tools in our hands, there are many ways to solve this particular problem,
but they all mostly consist of either:

• Figuring out the position of the element using DOM functions and iterating
through elements until we find a collision with a “solid” pixel

• Keeping track of the positions where we place objects and in which order they are
presented, which is the approach used in conventional game development

What’s at that Pixel? | 21

http://www.w3.org/TR/2dcontext/#pixel-manipulation
http://www.w3.org/TR/2dcontext/#pixel-manipulation

The first approach can be implemented by using the document.elementFromPoint()
DOM function to determine which element was clicked and if it is an image or an object
with a background (either a solid color or an image which may or may not have trans-
parent areas), we can use getImageData() to detect whether the selected pixel is
transparent. If that’s the case, we can select the parent (and if it’s not, we can look for
siblings). We can keep traversing the DOM until we find a “solid” color and select that
element instead of the image. However, this approach can be nonfunctional, imprac-
tical, or downright inefficient if:

• There are elements with a large number of siblings or parent nodes

• We are overriding the z-index of parent elements and “going through” the element
should select the element below it (which, in this case, would be a child node)

The second approach requires us to do things in a completely different way than most
web developers are used to: keeping track of the coordinates of the objects we present
on the screen, and upon a click action, do a hit test to see whether the X and Y coor-
dinates of the mouse are inside the area of any given object. The way to do this is to
store the position x, position y, width, and height of every element, as well as the order
in which they are being presented on the screen. Then, there are many methods that
you can use to cycle through all the elements in order to see which one you have clicked
on. Having the position x, position y, width, and height for every object that you present
allows you to create rectangles that you can later use to test whether the clientX and
clientY values returned by a mouse event (such as mousedown, mousemove, mouseup,
click, etc.) are inside them. Figure 1-5 shows how we can keep track of all the objects
presented on the screen. MX and MY (Mouse X and Mouse Y) represent the click co-
ordinates. Then we can check whether the mouse coordinates are inside any of the
other objects (in this case, the object being clicked would be #4).

In our case, we’re going to eliminate the two downsides of using document.element
FromPoint() by combining it with pointer-events: none, a CSS attribute that lets the
browser know that the mouse should not interact with an individual element, com-
pletely eliminating the need to traverse the DOM or keeping track of every single object
in our screen.

Figure 1-6 shows how our page is going to be organized. Clicks made in the transparent
areas of the “Smiley” img should go through the image, and we should get a reference
to the “Cheese” div, unless, of course, we click through the transparent areas of the
Smiley, and a hole of the Cheese, which should return a reference to the HTML docu-
ment.

22 | Chapter 1: Graphics Foundations: Canvas and Sprites

Figure 1-5. Tracking objects on the screen

Figure 1-6. A multilayer graphics approach.

To do this, we need to start off by detecting that the page has finished loading:

window.onload = function () {
 var MIN_ALPHA_THRESHOLD = 10;

 var canvas = document.getElementById('myCanvas');
 var c = canvas.getContext('2d');

 document.addEventListener('click', detectElement, false);

What’s at that Pixel? | 23

Notice a variable called MIN_ALPHA_THRESHOLD, which specifies how solid something
must be (on a scale of 0–255, which is included in the pixel-level data returned by
context.getImageData()) so as to not be considered transparent. All the clicks that we
make on the document call a function called detectElement().

The idea behind detectElement() is simple; first, we need to detect the object returned
by invoking document.elementFromPoint() and test for transparency. If it is transparent,
add the object to an array of objects we’re going to make “invisible” to pointer events,
and try again. Keep doing that until we find a solid object or body, show the result in
an alert box, and roll back all the changes:

function detectElement (e) {
 var invisibleObjects = new Array();
 var solidPixel = false;
 var obj;

 do {
 obj = document.elementFromPoint(e.clientX, e.clientY);
 if (obj == null || obj.tagName == 'BODY' || obj.tagName == 'HTML') {
 break;
 }
 if (isTransparent(obj, e.clientX, e.clientY)) {
 invisibleObjects.push(obj);
 setObjectEventVisibility(obj, false);
 } else {
 solidPixel = true;
 }
 } while(!solidPixel);

 for (var i = 0; i < invisibleObjects.length; i++) {
 setObjectEventVisibility(invisibleObjects[i], true);
 }

 invisibleObjects = null;

 alert(obj.tagName);
}

The setObjectEventVisibility() function makes elements visible or invisible to pointer
events by passing a reference to the object, and a boolean parameter indicating whether
we want to make objects visible or invisible. All it does is set the value of the pointer
Events CSS attribute to either visiblePainted (the default) or none. Other valid values
for pointerEvents are visibleFill, visibleStroke, visible, painted, fill, stroke, all,
and inherit. You can see the complete list and what each is for in the relevant W3C
specification page: http://www.w3.org/TR/SVG/interact.html#PointerEventsProperty.
Notice that we’re going to be assuming that we are not going to be using values for
pointerEvents other than visiblePainted or none. Extending the functionality of the
function shown here to support all other pointerEvents is left as an exercise to the
reader:

24 | Chapter 1: Graphics Foundations: Canvas and Sprites

http://www.w3.org/TR/SVG/interact.html#PointerEventsProperty

function setObjectEventVisibility(obj, visible) {
 if (visible) {
 obj.style.pointerEvents = 'visiblePainted';
 } else {
 obj.style.pointerEvents = 'none';
 }
}

The function that we’re going to be using to detect if an specific coordinate of an image
is transparent is called isPixelTransparent(). In order to make this function work cor-
rectly, we must take into account all the different use-cases in which it will be used.
For example, let’s say that we have a 300×300-pixel div, but as a background we are
using a 600×300-pixel image with a horizontal background offset of 300 pixels.

Figure 1-7 shows how the div could look (in reality, our background image will be the
“cheese” texture) and also shows the complete image being used as its background.
Notice that the background of that div has a horizontal offset of 300 pixels. If we didn’t
take that offset into account, clicking on the center of the image would result in a
transparent pixel instead of the solid blue one. Another thing to keep in mind (not taken
into account in this script) is that in the case of non-img elements (such as divs), we
might be using the CSS3 background-size attribute, which allows us to adjust how the
background image is presented relative to the div that is containing it.

Figure 1-7. A div and background

Therefore, in the case of non-img elements, we’re going to use the following helper
function:

function getBackgroundPosition(src, property) {
 property = property.split(' ');

What’s at that Pixel? | 25

 /**
 * Modifying the code to find out if its inheriting any properties
 * from a parent would be too inefficient. We're going to be
 * assuming that if the element has 'auto', it means 0
 */
 var left = (property[0] != 'auto') ? property[0].substr(0, property[0].length - 2) :
0;
 var top = (property[1] != 'auto') ? property[1].substr(0, property[1].length - 2) : 0;

 return {
 x: left,
 y: top
 };
}

For the sake of simplicity, we’re going to assume that all background images are not
being repeated either horizontally or vertically and that we will be using a single back-
ground per element (CSS3 supports multiple backgrounds). However, extending the
functions to support multiple backgrounds can be done very easily by loading all of
them in an array.

That said, our isPixelTransparent() function is going to look like this:

function isPixelTransparent (src, x, y, oWidth, oHeight, offsetX, offsetY) {
 var img = new Image()
 img.src = src;

 // If parameters are not being passed on to this function, use "default" values
 oWidth = (!oWidth) ? img.width : oWidth;
 oHeight = (!oHeight) ? img.height : oHeight;
 offsetX = (!offsetX) ? 0 : offsetX;
 offsetY = (!offsetY) ? 0 : offsetY;

 // 'Reset' the canvas before painting over it again
 c.clearRect(0, 0, 1, 1);

 c.drawImage(img, offsetX - x, offsetY - y, img.width, img.height);

 var idata = c.getImageData(0, 0, 1, 1);
 var data = idata.data;
 var alpha = data[3];

 return (alpha < MIN_ALPHA_THRESHOLD);
}

Finally, the isTransparent() function will be in charge of getting the element located
at the X and Y coordinates returned by document.elementFromPoint() and figuring out
how to interpret it before calling isPixelTransparent().

To do this correctly, we first need to calculate the relative coordinates of the click
depending on the position of the object on the screen:

function isTransparent(obj, x, y) {
 var robj = obj;
 var rx = robj.x;

26 | Chapter 1: Graphics Foundations: Canvas and Sprites

 var ry = robj.y;
 var offset = { x: 0, y: 0 };
 var padding = { x: 0, y: 0 };
 var margin = { x: 0, y: 0 };

 // Calculate the X (left) and Y (top) coordinates relative to the
 // parent until we get to the "top"
 if (robj.offsetParent) {
 rx = 0;
 ry = 0;

 while(robj.offsetParent) {
 rx += robj.offsetLeft;
 ry += robj.offsetTop;
 robj = robj.offsetParent;
 }
 }

In addition to the separation between the object and its parent objects, they might also
have a padding or a margin defined, so we need to take that possibility into account as
well. Figure 1-8 will give you an idea of what a particular scenario might look like.

Figure 1-8. Clicking on a set of containers

What’s at that Pixel? | 27

We have detected a click inside the D container, and we also know that:

document.addEventListener('click', detectElement, false);

returns coordinates relative to the edges of the window (container A). Thus if we want
to figure out the X and Y coordinates relative to the D container, we need to cycle
through all of D’s parent containers (C and B) until we get to the top (A). In this case,
that would be:

/* Pseudocode */
xCoord = Mouse.x - 12 (C) - 55 (B) - 10 (A)
yCoord = Mouse.y - 8 (C) - 10 (B) - 15 (A)

This separation between the container and all of its children could be because:

• We have defined that the children should be positioned using either position:
absolute or position: relative, setting a top, left, right, or bottom value(s)

• The container has a padding

• The children have a margin

And so on. However, there are a few “gotchas” in which some of these rules don’t apply.
For example, if the parent container has defined a padding but its children are using
position: absolute, they won’t be affected by it.

Usually, to get a CSS attribute, many developers use:

document.getElementById('ObjectName').style.property

The problem with that approach is that it doesn’t take into account CSS attributes
defined via a CSS Stylesheet; it can be used only when styles are defined inline. Modern
browsers usually support window.getComputedStyle. Here’s how to access a property:

var cs = document.defaultView.getComputedStyle(obj, null);
paddingLeft = cs.getPropertyValue('padding-left');

The name of the computed styles is the same as the CSS attribute that we’re trying to
access; for example, the left padding would be getPropertyValue('padding-left') and
a background image would be getPropertyValue('background-image').

Then we need to figure out what sort of DOM element we’re dealing with. Images
should be handled in a different way than, say, a div or a td. Elements that do
not support background images or “image source” attributes will be considered
transparent:

switch(obj.tagName) {
 case 'IMG':
 // Handle image source
 break;
 case 'DIV':
 case 'TD':
 case 'P':
 case 'SPAN':
 case 'A':

28 | Chapter 1: Graphics Foundations: Canvas and Sprites

 // handle background image or solid color
 break;
 default:
 return true;
 break;
}

Conventional img tags are the easiest to handle, as the path to the image is declared in
the source attribute:

case 'IMG':
 return isPixelTransparent(obj.src, (x - rx), (y - ry), obj.width, obj.height);
 break;

However, all other elements require a trickier way to figure out if the object has a solid
color or an image background—and if they do, how the image is positioned and pre-
sented inside it.

The complete code for this example is ex5-clickthrough.html in the examples folder of
the code repository.

Choosing a Rendering Method for Our Graphics
Just as website download times translate to more or fewer visitors in the statistics (be-
cause faster download times reduce visitor dropoff), fluidly rendering graphics and
animations on the screen should be one of the most crucial priorities when developing
any sort of video game. We’ll lose a lot of players if graphics and animations are shaking
all the time due to low frame rates. In isometric real-time strategy games, we’ll have to
keep both things in mind, especially if we want our game to be played on mobile devices
as well as desktop computers.

In isometric real-time strategy games, the most basic “objective” of the game is to place
buildings on a grid. Each building will generate P amount of points every N number of
seconds, which will allow us to buy additional buildings.

Although the most adequate, reliable, and performance-efficient way to draw a grid in
a web browser (without using a third-party plugin) depends on the project require-
ments, there are four possible approaches:

• We can display graphics using WebGL context of the HTML5 Canvas object,
which is not covered in this book (see the note following this list).

• We can also present tiles and objects as conventional HTML elements (such as
divs or imgs) and position them using the CSS top and left properties. There are
two variations of this approach: using isometric-shaped graphics, or rotating and
skewing graphics ourselves using CSS3.

Choosing a Rendering Method for Our Graphics | 29

• We can deploy a variation of the previous approach, which consists of presenting
elements in a similar fashion to the previous method, but using the new CSS3
positioning tools, such as translateX and translateY—as well as setting transla
teZ(0)—to force hardware acceleration in Chrome, Safari, and Safari for the
iPhone.

• We can use the 2D context of the HTML5 Canvas object.

Other rendering methods exist but are too inefficient to be used in the context of a
video game.

Although WebGL is the fastest and most efficient method to render
graphics on the screen, the reason we’re not going to consider it as a
reliable method is because, at the time of writing of this book, the
WebGL spec hadn’t reached version 1.0 and is not supported in the
release versions of Internet Explorer 9, Safari for the iPhone, Safari, An-
droid Web Browser, and Opera (Firefox for Android does include sup-
port for WebGL, but it needs to be enabled manually in about:config).
Microsoft has already stated that they won’t be supporting WebGL at
all due to security concerns (http://blogs.technet.com/b/srd/archive/
2011/06/16/webgl-considered-harmful.aspx). Additionally, WebGL is
based on OpenGL ES 2.0—a competing product of DirectX, Microsoft’s
own graphic library—and also threatens Silverlight (a Rich Internet Ap-
plication, or RIA, framework for browser-based applications). For more
information about the current status of WebGL, refer to the public
mailing list on the Khronos Group website: https://www.khronos.org/
webgl/public-mailing-list/.

A few weeks before publishing this book, the most efficient way to display the grid was
using the third approach, due to the hardware acceleration hack (or feature). The
problem with this approach (or the second approach) is that unless we want to keep
an enormous number of elements on the DOM tree (one for each tile, plus others for
buildings, etc.) when we scroll, we need to constantly add and remove nodes (to display
only the elements that we can see, thus keeping the node count low). Adding or re-
moving nodes from the DOM tree triggers a computationally expensive operation on
the browser called a reflow that allows the layout engine of the browser to compute the
geometry of the elements inside the DOM tree. Due to the implementation of hardware
acceleration in the 2D and 3D contexts, recent (and future) developments have made
and will reinforce the HTML5 Canvas as the most appropriate and efficient graphics
rendering method for interactive video games.

The isometric game genre works around building objects on a grid, which is nothing
more than a matrix containing two dimensions: one for the “Rows,” which we’ll some-
times call the “X” axis, and another for the “Columns,” which we’ll sometimes define
as the Y axis. Example 1-5 generates a matrix of 20×50 tiles (20 rows per 50 columns)
using this approach.

30 | Chapter 1: Graphics Foundations: Canvas and Sprites

http://blogs.technet.com/b/srd/archive/2011/06/16/webgl-considered-harmful.aspx
http://blogs.technet.com/b/srd/archive/2011/06/16/webgl-considered-harmful.aspx
https://www.khronos.org/webgl/public-mailing-list/
https://www.khronos.org/webgl/public-mailing-list/

Example 1-5. Creating a simple grid

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <title>Example 6 (Generating a 20 × 50 grid)</title>
 <script>
 window.onload = function () {
 var tileMap = [];
 var grid = {
 width: 20,
 height: 50
 };

 function initializeGrid() {
 for (var i = 0; i < grid.width; i++) {
 tileMap[i] = [];
 for (var j = 0; j < grid.height; j++) {
 tileMap[i][j] = 0;
 }
 }
 }

 initializeGrid();
 }
 </script>
 </head>
 <body>
 </body>
</html>

With the right approach, the size of the grid can be almost unlimited and shouldn’t
have an impact on performance. We can resort to working with 500×500 or
1,000×1,000 fragments and then, as we are approaching the “beginning” or the “end”
of the fragment, we can use a memory paging routine to load/save the fragments, either
in the computer hard disk drive—in our case, the WebStorage API—or online in a
database. For the sake of simplicity, for our game we will be working with a 250×250
grid (62,500 tiles) and will leave the implementation of a memory paging function as
an exercise for the reader.

For the moment, we’re going to focus on displaying our grid using squares, and later
on, we’ll switch to an isometric view.

Let’s suppose that we have a really big grid of 6,250,000 tiles (2,500 rows per 2,500
columns) in which each tile has a width and height of 32 pixels and the grid will be
displayed in a container that has a resolution of 300×300 pixels. Over the years, when
faced with a similar problem (displaying a grid on the screen several times per second),
I have seen people doing these sort of things:

Choosing a Rendering Method for Our Graphics | 31

for (var row = 0; row < grid.length; row++) {
 for (var col = 0; col < grid[row].length; col++) {
 displayTile(row, col);
 }
}

This code cycles through every single position on the grid and tries to display the tile
without checking whether it is inside the screen. Also, each iteration on both for loops
(rows and columns) needs to check the size of the grid and grid[row] arrays, so it’s
terribly inefficient.

Others have been a little bit more generous:

for (var row = 0, rowLength = grid.length; row < rowLength; row++) {
 for (var col = 0, colLength = grid[0].length; col < colLength; col++) {
 if (tileIsInsideScreen(row, col)) {
 displayTile(row, col);
 }
 }
}

This approach is a great performance improvement compared to the previous example.
Now the size of the grid array is being stored in a variable (and therefore doesn’t need
to check the element count on each iteration) and displays the tile only if it can be
shown on the screen. However, the main problem remains: it still has to do 6,250,000
iterations. Surely you must be wondering if there’s a way to improve on that number.
And fortunately for all of us, there is.

The trick consists mainly of iterating through only the elements that you can display
by taking into account variables such as the X/Y offset (scroll), tile width/height, and
display area width/height in the following way:

var startRow = Math.floor(scroll.x / tile.width);
var startCol = Math.floor(scroll.y / tile.height);
var rowCount = startRow + Math.floor(canvas.width / tile.width) + 1;
var colCount = startCol + Math.floor(canvas.height / tile.height) + 1;

Then you just need to use those variables inside the loops:

for (var row = startRow; row < rowCount; row++) {
 for (var col = startCol; col < colCount; col++) {
 displayTile(row, col);
 }
}

Example 1-6 demonstrates creating a grid with this approach, and Figure 1-9 compares
the results to other approaches.

Example 1-6. Generating a 2500×2500 grid

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <title>Example 7 (Generating a 2500 × 2500 grid)</title>

32 | Chapter 1: Graphics Foundations: Canvas and Sprites

 <script>
 window.onload = function () {
 var tileMap = [];

 var tile = {
 width: 32,
 height: 32
 }

 var grid = {
 width: 2500,
 height: 2500
 }

 var Keys = {
 UP: 38,
 DOWN: 40,
 LEFT: 37,
 RIGHT: 39
 }

 var scroll = {
 x: 0,
 y: 0
 }

 var canvas = document.getElementById('myCanvas');
 var c = canvas.getContext('2d');

 window.addEventListener('keydown', handleKeyDown, false);

 initializeGrid();
 draw();

 function handleKeyDown(e) {
 switch (e.keyCode) {
 case Keys.UP:
 scroll.y -= ((scroll.y - tile.height) >= 0) ? tile.height : 0;
 break;
 case Keys.DOWN:
 scroll.y += tile.height;
 break;
 case Keys.LEFT:
 scroll.x -= ((scroll.x - tile.width) >= 0) ? tile.width : 0;
 break;
 case Keys.RIGHT:
 scroll.x += tile.width;
 break;
 }

 document.getElementById('scrollx').innerHTML = scroll.x;
 document.getElementById('scrolly').innerHTML = scroll.y;
 }

Choosing a Rendering Method for Our Graphics | 33

 function initializeGrid() {
 for (var i = 0; i < grid.width; i++) {
 tileMap[i] = [];
 for (var j = 0; j < grid.height; j++) {
 if ((i % 2) == 0 && (j % 2) == 0) {
 tileMap[i][j] = 0;
 } else {
 tileMap[i][j] = 1;
 }
 }
 }
 }

 function draw() {
 c.fillStyle = '#FFFFFF';
 c.fillRect (0, 0, canvas.width, canvas.height);
 c.fillStyle = '#000000';

 var startRow = Math.floor(scroll.x / tile.width);
 var startCol = Math.floor(scroll.y / tile.height);
 var rowCount = startRow + Math.floor(canvas.width / tile.width) + 1;
 var colCount = startCol + Math.floor(canvas.height / tile.height) + 1;

 for (var row = startRow; row < rowCount; row++) {
 for (var col = startCol; col < colCount; col++) {
 var tilePositionX = tile.width * row;
 var tilePositionY = tile.height * col;

 tilePositionX -= scroll.x;
 tilePositionY -= scroll.y;

 if (tileMap[row][col] == 0) {
 c.strokeRect(tilePositionX, tilePositionY, tile.width, tile.height);
 } else {
 c.fillRect(tilePositionX, tilePositionY, tile.width, tile.height);
 }
 }
 }

 setTimeout(draw, 1);
 }
 }
 </script>
 </head>
 <body>
 <canvas id="myCanvas" width="300" height="300"></canvas>

 Use the UP, DOWN, LEFT and RIGHT keys to scroll

 Scroll X: 0

 Scroll Y: 0
 </body>
</html>

34 | Chapter 1: Graphics Foundations: Canvas and Sprites

Although, as Figure 1-9 shows, the difference in performance is extreme, there is one
more thing that we can optimize. In the previous example, the initializeGrid() func-
tion took care of filling the tileMap matrix with zeros or ones, and storing the 6,250,000
elements in memory. Then, inside the draw() loop, we show an empty square if the
positions X and Y of the matrix are even and a solid square if they are uneven. We can
accomplish the same without using a matrix at all by modifying this bit of the draw()
function:

if (tileMap[row][col] == 0) {
 c.strokeRect(tilePositionX, tilePositionY, tile.width, tile.height);
} else {
 c.fillRect(tilePositionX, tilePositionY, tile.width, tile.height);
}

if ((row % 2) == 0 && (col % 2) == 0) {
 c.strokeRect(tilePositionX, tilePositionY, tile.width, tile.height);
} else {
 c.fillRect(tilePositionX, tilePositionY, tile.width, tile.height);
}

Figure 1-9. Performance optimization results

This small modification allows us to get rid of the grid initialization function, but now
our grid is not being imposed with any limits that would allow us to scroll beyond the
2,500×2,500 tiles that we originally planned to use. Although this bug (other developers
might call it a feature) could be considered useful for some people, if we want to force
the grid to not scroll beyond the 2,500×2,500 boundary, we need to modify another
bit of the draw() function. We need to change this part of the code:

Choosing a Rendering Method for Our Graphics | 35

var startRow = Math.floor(scroll.x / tile.width);
var startCol = Math.floor(scroll.y / tile.height);
var rowCount = startRow + Math.floor(canvas.width / tile.width) + 1;
var colCount = startCol + Math.floor(canvas.height / tile.height) + 1;

and impose the boundary below, like this:

var startRow = Math.floor(scroll.x / tile.width);
var startCol = Math.floor(scroll.y / tile.height);
var rowCount = startRow + Math.floor(canvas.width / tile.width) + 1;
var colCount = startCol + Math.floor(canvas.height / tile.height) + 1;

rowCount = ((startRow + rowCount) > grid.width) ? grid.width : rowCount;
colCount = ((startCol + colCount) > grid.height) ? grid.height : colCount;

The entire code for this improved approach can be found on the official code repository
as ex7-grid-canvas-alt.html. See the result in Figure 1-10.

Figure 1-10. Many old-school adventure games using this top-down view employ a similar approach
to display their maps

Besides handling the scrolling, we’ll probably want to add other ways to interact with
the grid, such as changing individual tiles when we click on them.

36 | Chapter 1: Graphics Foundations: Canvas and Sprites

Translating the pixel coordinates returned by the click event to matrix coordinates in
a square grid can be easily accomplished with the following formula:

var row = Math.floor(mousePositionX / tileWidth);
var column = Math.floor(mousePositionY / tileHeight);

If we need to take into account the scrolling coordinates, we just add them it to the
mouse positions like this:

var row = Math.floor((mousePositionX + scrollPositionX) / tileWidth);
var column = Math.floor((mousePositionY + scrollPositionY) / tileHeight);

Having removed the grid initialization code raises an interesting question: how do we
keep track of the elements that we have modified? Luckily for us, we don’t need to start
arrays indexes on zero, which means that we can do this:

tileMap[2423] = [];
tileMap[2423][1803] = 4;

Using this approach, we’d store only the elements that we need. Other unset positions
in the matrix would just return undefined or null. Example 1-7, ex8-grid-canvas.html
in the code repository, shows how to implement this idea, with the result shown in
Figure 1-11.

Figure 1-11. Screenshot of Example 1-8; red squares indicate positions that have been clicked by the
player

Choosing a Rendering Method for Our Graphics | 37

Example 1-7. Storing only the elements we need

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <title>Example 8</title>

 <script>
 window.onload = function () {
 var tileMap = [];

 var tile = {
 width: 32,
 height: 32
 }

 var grid = {
 width: 2500,
 height: 2500
 }

 var Keys = {
 UP: 38,
 DOWN: 40,
 LEFT: 37,
 RIGHT: 39
 }

 var scroll = {
 x: 0,
 y: 0
 }

 var canvas = document.getElementById('myCanvas');
 var c = canvas.getContext('2d');

 canvas.addEventListener('click', handleClick, false);
 window.addEventListener('keydown', handleKeyDown, false);

 draw();

 function handleClick(e) {
 // When a click is detected, translate the mouse
 // coordinates to pixel coordinates
 var row = Math.floor((e.clientX + scroll.x) / tile.width);
 var column = Math.floor((e.clientY + scroll.y) / tile.height);

 if (tileMap[row] == null) {
 tileMap[row] = [];
 }
 tileMap[row][column] = 1;
 }

 function handleKeyDown(e) {
 switch (e.keyCode) {

38 | Chapter 1: Graphics Foundations: Canvas and Sprites

 case Keys.UP:
 scroll.y -= ((scroll.y - tile.height) >= 0) ? tile.height : 0;
 break;
 case Keys.DOWN:
 scroll.y += tile.height;
 break;
 case Keys.LEFT:
 scroll.x -= ((scroll.x - tile.width) >= 0) ? tile.width : 0;
 break;
 case Keys.RIGHT:
 scroll.x += tile.width;
 break;
 }

 document.getElementById('scrollx').innerHTML = scroll.x;
 document.getElementById('scrolly').innerHTML = scroll.y;
 }

 function draw() {

 c.fillStyle = '#FFFFFF';
 c.fillRect (0, 0, canvas.width, canvas.height);
 c.fillStyle = '#000000';

 var startRow = Math.floor(scroll.x / tile.width);
 var startCol = Math.floor(scroll.y / tile.height);
 var rowCount = startRow + Math.floor(canvas.width / tile.width) + 1;
 var colCount = startCol + Math.floor(canvas.height / tile.height) + 1;

 rowCount = ((startRow + rowCount) > grid.width) ? grid.width : rowCount;
 colCount = ((startCol + colCount) > grid.height) ? grid.height : colCount;

 for (var row = startRow; row < rowCount; row++) {
 for (var col = startCol; col < colCount; col++) {
 var tilePositionX = tile.width * row;
 var tilePositionY = tile.height * col;

 tilePositionX -= scroll.x;
 tilePositionY -= scroll.y;

 if (tileMap[row] != null && tileMap[row][col] != null) {
 c.fillStyle = '#CC0000';
 c.fillRect(tilePositionX, tilePositionY, tile.width, tile.height);
 c.fillStyle = '#000000';
 } else {
 if ((row % 2) == 0 && (col % 2) == 0) {
 c.strokeRect(tilePositionX, tilePositionY, tile.width, tile.height);
 } else {
 c.fillRect(tilePositionX, tilePositionY, tile.width, tile.height);
 }
 }
 }
 }

 setTimeout(draw, 1);

Choosing a Rendering Method for Our Graphics | 39

 }
 }
 </script>
 </head>
 <body>
 <canvas id="myCanvas" width="300" height="300"></canvas>

 Use the UP, DOWN, LEFT and RIGHT keys to scroll

 Scroll X: 0

 Scroll Y: 0
 </body>
</html>

So far, all the optimizations that we have made allowed us to increase the performance
of our game dramatically, but there is one more thing that we need to take care of before
we go on.

The draw() loop—the heart and soul of our game, which allows us to display elements
on the screen—gets called many times per second, regardless of whether the graphics
inside the canvas have changed. On other, more dynamic genres of video games in
which we’d find several objects moving on the screen at the same time, this approach
would be okay, but in the case of isometric real-time strategy games, most graphics on
the screen are usually static, so doing this is a bit unnecessary; we can probably avoid
it by calling draw() only as needed, instead of calling it many times per second as we
are currently doing.

However, also remember that the draw() function will render the entire grid after the
slightest change, so even calling draw() on demand could have a huge performance
penalty (see Figure 1-12), especially if we need to animate only a few small objects and
leave the rest unchanged.

Figure 1-12. CPU usage is at 30% on a PC; on a mobile device, this value would be around 90 or 100%

Back in the early 1990s, while at id Software, John Carmack was working on a game
called Commander Keen, the very first side-scroller game released for the PC, when he
was faced with a similar problem. To solve it, he invented a technique known as Adap-
tive Tile Refresh (ATR), in which he redrew only the area that had changed.

In order to implement a similar technique, we need to get rid of the setTimeout() in the
draw() loop and add four parameters to the draw() function: srcX, srcY, destX, and
destY. Calling the draw() function without passing any parameters should redraw the
entire canvas; passing the srcX/Y and destX/Y parameters should redraw only the area
within that boundary.

Example 1-8 shows how to do this.

40 | Chapter 1: Graphics Foundations: Canvas and Sprites

Example 1-8. Modified grid using ATR

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <title>Example 9 - Grid modified to work with ATR (Adaptive Tile Refresh)</title>

 <script src="timer.js" charset="utf-8"></script>
 <script src="sprite.js" charset="utf-8"></script>
 <script>
 window.onload = function () {
 var tile = {
 width: 3,
 height: 3
 }

 var grid = {
 width: 100,
 height: 100
 }

 var canvas = document.getElementById('myCanvas');
 var c = canvas.getContext('2d');

 var man1 = new Sprite('../img/char1.png', 32, 32, 0, 96, 4, 200);
 var man2 = new Sprite('../img/char2.png', 32, 32, 0, 224, 6, 400);
 var man3 = new Sprite('../img/char3.png', 32, 32, 0, 128, 4, 600);

 var timer = new Timer();

 // Draw the entire grid
 draw();
 displayAnimatedSprites();

 function displayAnimatedSprites() {
 timer.update();

 man1.setPosition(120, 60);
 man2.setPosition(120, 102);
 man3.setPosition(120, 141);

 // Redraw just the area of the grid being changed
 draw(man1.posX, man1.posY, man1.width, man1.height);
 draw(man2.posX, man2.posY, man2.width, man2.height);
 draw(man3.posX, man3.posY, man3.width, man3.height);

 man1.animate(c, timer);
 man2.animate(c, timer);
 man3.animate(c, timer);

 setTimeout(function() {
 displayAnimatedSprites(timer.getSeconds());
 }, 100);
 }

Choosing a Rendering Method for Our Graphics | 41

 function draw(srcX, srcY, destX, destY) {
 srcX = (srcX === undefined) ? 0 : srcX;
 srcY = (srcY === undefined) ? 0 : srcY;
 destX = (destX === undefined) ? canvas.width : destX;
 destY = (destY === undefined) ? canvas.height : destY;

 c.fillStyle = '#FFFFFF';
 c.fillRect (srcX, srcY, destX + 1, destY + 1);
 c.fillStyle = '#000000';

 var startRow = 0;
 var startCol = 0;
 var rowCount = startRow + Math.floor(canvas.width / tile.width) + 1;
 var colCount = startCol + Math.floor(canvas.height / tile.height) + 1;

 rowCount = ((startRow + rowCount) > grid.width) ? grid.width : rowCount;
 colCount = ((startCol + colCount) > grid.height) ? grid.height : colCount;

 for (var row = startRow; row < rowCount; row++) {
 for (var col = startCol; col < colCount; col++) {
 var tilePositionX = tile.width * row;
 var tilePositionY = tile.height * col;

 if (tilePositionX >= srcX && tilePositionY >= srcY &&
 tilePositionX <= (srcX + destX) &&
 tilePositionY <= (srcY + destY)) {

 c.strokeStyle = '#CCCCCC';
 c.strokeRect(tilePositionX, tilePositionY, tile.width, tile.height);
 }
 }
 }
 }
 }
 </script>
 </head>
 <body>
 <canvas id="myCanvas" width="300" height="300"></canvas>
 </body>
</html>

Figure 1-13 shows that even while running three different animations simultaneously,
the CPU usage has gone down dramatically from ~30% to just ~6.5%.

42 | Chapter 1: Graphics Foundations: Canvas and Sprites

Figure 1-13. Drastically reduced CPU usage

For the sake of simplicity, in this book we allow only one ATR coordinate at a time,
but on professional, more complex video games, draw() functions may accept an array
with several ATR coordinates, which allows them to refresh many positions with a
single call. For example:

function draw(atrArray) {
 for (var i = 0, len = atrArray.length; i < len; i++) {
 if (insideScreen(atrArray[i])) {
 drawGraphic();
 }
 }
}

Choosing a Rendering Method for Our Graphics | 43

CHAPTER 2

Making It Isometric

Our game, and other isometric games such as Sid Meier’s Civilization, Blizzard’s Dia-
blo, or Zynga’s FarmVille, CityVille, and Café World use a special form of isometric
projection (called dimetric projection) in which tiles (usually diamonds or hexagons)
are displayed in a 2:1 ratio with their height at half their width.

Most game developers choose to display tiles with this specific 2:1 ratio because of a
problem unique to raster graphics, which we can understand if we know how computer
monitors work. Monitors—whether they are CRT, TFT/LCD, LED, or OLED—dis-
play pixels in a grid similar to the one in our game, which allows us to draw perfect
vertical or horizontal lines. However, if we need to display a line at an angle than 0° or
90°, things start to get messy. Figure 2-1 shows the resulting problems.

Although the 90°, 45°, and 0° lines have a regular pattern and can be “stitched” with a
parallel line perfectly, the 30° line doesn’t; it contains gaps instead. However, if we use
the 2:1 ratio, we can calculate the inverse tangent (arctangent) of 1/2 to get 26.5650°,
producing a result like Figure 2-2.

45

Figure 2-1. Gaps in lines drawn at an angle

Figure 2-2. A cleaner result at 26.565 degrees

Although so far our grid works only with squares, converting a square texture to an
isometric texture can be accomplished easily by using code like that in Example 2-1 to
produce a result like the one shown in Figure 2-3.

46 | Chapter 2: Making It Isometric

Example 2-1. Converting squares to an isometric grid

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <title>Example 10 - (Convert square texture to isometric diamond)</title>

 <script>
 window.onload = function () {
 var canvas = document.getElementById('myCanvas');
 var c = canvas.getContext('2d');

 var texture = new Image();
 texture.src = '../img/squareTexture.png';

 drawDiamond();

 function drawDiamond() {
 // Save the current context
 c.save();

 // Scale the results to a isometric/dimetric 2:1 ratio
 c.scale(1, 0.5);

 // Rotate the context 45 degrees
 c.rotate(45 * Math.PI / 180);

 // If we rotate the image on 0, 0 half of it will be
 // displayed outside the canvas, so compensate
 c.drawImage(texture,
 0,
 0,
 texture.width,
 texture.height,
 texture.width / 2,
 (texture.height / 2) * −1,
 texture.width,
 texture.height);

 // Restore the context
 c.restore();
 }
 }
 </script>
 </head>
 <body>
 <canvas id="myCanvas" width="300" height="300"></canvas>
 </body>
</html>

Making It Isometric | 47

Figure 2-3. The output of Example 2-1

If we combine the drawDiamond() function with the HTML5 Canvas getImageData()
and putImageData() functions that we discussed in the previous chapter, we can store
the result of the transformation and later reuse it to display many elements using only
a single transformation.

The problem is that using putImageData() is slower than calling drawImage(), so a more
efficient approach (even if it is an small inconvenience for our texture artists) is to use
diamond-shaped images directly.

Drawing and working inside of an isometric grid is not hard if you know how isometric
tiles work, as shown in Figure 2-4.

As you can see, an isometric tile is nothing more than a rectangle that is twice as wide
as it is tall. The diamond inside of it, usually just an image or a vector representation,
is defined by the coordinates:

West
X: 0

Y: tile.height/2

East
X: tile.width

Y: tile.height/2

48 | Chapter 2: Making It Isometric

North
X: tile.width/2

Y: 0

South
X: tile.width/2

Y: tile.height

This means that if we want to display two tiles:

1. We first need to position the first tile.

2. The second tile should be positioned in the first tile’s width divided by 2, plus the
first tile’s height divided by 2.

Also, due to how this process works, we need to keep in mind that tiles must have an
even width (divisible by 2); otherwise, we won’t be able to form the grid in a consistent
way.

Example 2-2 shows how to display a basic isometric grid. Later on, we’ll modify it so
that it uses the high-performance approach.

Example 2-2. A simple but inefficient approach to displaying an isometric grid

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <title>Example 11 - (Displaying an isometric grid)</title>

Figure 2-4. Building an isometric grid out of tiles

Making It Isometric | 49

 <script>
 window.onload = function () {
 var canvas = document.getElementById('myCanvas');
 var c = canvas.getContext('2d');

 var tile = new Image();
 tile.src = "../img/tile.png";

 draw();

 function draw() {

 c.clearRect (0, 0, canvas.width, canvas.height);

 for (var col = 0; col < 10; col++) {
 for (var row = 0; row < 10; row++) {
 var tilePositionX = (row − col) * tile.height;

 // Center the grid horizontally
 tilePositionX += (canvas.width / 2) − (tile.width / 2);

 var tilePositionY = (row + col) * (tile.height / 2);

 c.drawImage(tile,
 Math.round(tilePositionX),
 Math.round(tilePositionY),
 tile.width,
 tile.height);
 }
 }
 }
 }
 </script>
 </head>
 <body>
 <canvas id="myCanvas" width="600" height="300"></canvas>
 </body>
</html>

Translating click coordinates to matrix coordinates in an isometric grid is a bit more
complex than doing it in a square grid, especially if we’re dealing with an infinite grid.
For the sake of simplicity and performance, these examples (and our final game) will
use a fixed grid of 250×250 (62,500 tiles), which is bigger than other games of this genre.

Before we make the formula, we need to take into account the offset produced by
centering the grid horizontally (Figure 2-6).

50 | Chapter 2: Making It Isometric

Figure 2-5. Output of Example 2-2

Figure 2-6. We can see how the tiles are going to be positioned on the canvas and how we can calculate
on which tile we clicked on

Making It Isometric | 51

We first need to take into account any offsets in the X or Y axes such as scroll positions
or horizontal/vertical alignments. Any offsets not taken into account will cause prob-
lems when we translate the coordinates:

var gridOffsetY = grid.height;
var gridOffsetX = grid.width;

// Take into account the offset on the X axis caused
// by centering the grid horizontally
gridOffsetX += (canvas.width / 2) - (tile.width / 2);

Using these two variables, we can start translating the coordinates for the column:

var col = (e.clientY - gridOffsetY) * 2;
col = ((gridOffsetX + col) - e.clientX) / 2;

And having the column, we can do the same for the rows:

var row = ((e.clientX + col) - tile.height) - gridOffsetX;

We finally finish by dividing both results by the tile height and rounding the result:

row = Math.round(row / tile.height);
col = Math.round(col / tile.height);

Example 2-3 applies this formula in a practical context, placing tiles to create the image
shown in Figure 2-7.

Example 2-3. Converting click coordinates to matrix coordinates

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <title>Example 12 - (Capturing click events and translating them
 to matrix coordinates)</title>

 <script>
 window.onload = function () {
 var grid = {
 width: 10,
 height: 10
 }

 var canvas = document.getElementById('myCanvas');
 var c = canvas.getContext('2d');

 var tileMap = [];

 var tile = new Image();
 tile.src = "../img/tile.png";

 var dirt = new Image();
 dirt.src = "../img/dirt.png";

 canvas.addEventListener('mousedown', handleMouseDown, false);

52 | Chapter 2: Making It Isometric

 draw();

 function handleMouseDown(e) {
 var gridOffsetY = grid.height;
 var gridOffsetX = grid.width;

 // Take into account the offset on the X axis caused
 // by centering the grid horizontally
 gridOffsetX += (canvas.width / 2) - (tile.width / 2);

 var col = (e.clientY - gridOffsetY) * 2;
 col = ((gridOffsetX + col) - e.clientX) / 2;

 var row = ((e.clientX + col) - tile.height) - gridOffsetX;

 row = Math.round(row / tile.height);
 col = Math.round(col / tile.height);

 // Check the boundaries!
 if (row >= 0 &&
 col >= 0 &&
 row <= grid.width &&
 col <= grid.height) {

 tileMap[row] = (tileMap[row] === undefined) ? [] : tileMap[row];

 tileMap[row][col] = 1;
 draw();
 }
 }

 function draw() {

 c.clearRect (0, 0, canvas.width, canvas.height);

 for (var col = 0; col < grid.height; col++) {
 for (var row = 0; row < grid.width; row++) {

 var tilePositionX = (row - col) * tile.height;

 // Center the grid horizontally
 tilePositionX += (canvas.width / 2) - (tile.width / 2);

 var tilePositionY = (row + col) * (tile.height / 2);

 if (tileMap[row] != null && tileMap[row][col] != null) {
 c.drawImage(dirt,
 Math.round(tilePositionX),
 Math.round(tilePositionY),
 dirt.width,
 dirt.height);
 } else {
 c.drawImage(tile, Math.round(tilePositionX), Math.round(tilePositionY),
tile.width, tile.height);

Making It Isometric | 53

 }
 }
 }
 }
 }
 </script>
 </head>
 <body>
 <canvas id="myCanvas" width="600" height="300"></canvas>
 </body>
</html>

Figure 2-7. Using the new tile display approach; CPU usage is at 0%

In the code repository is an example called ex12-isogrid-click-alt.html, which shows
how to perform a matrix rotation.

Now that you know how to translate click coordinates to matrix coordinates in an
isometric plane, one thing that we might want to do is to place buildings, like the one
shown in Figure 2-8.

54 | Chapter 2: Making It Isometric

Figure 2-8. A building texture occupying four tiles

Unlike conventional tiles, building textures like the one seen in Figures 2-8 and 2-9
have different heights and may occupy more than one tile, which requires a different
approach to position them.

As you can see in Figure 2-9, in order to be displayed correctly, buildings should be
positioned starting on the bottom-center coordinate, as follows:

for (var row = 0; row < 10; row++) {
 for (var col = 0; col < 10; col++) {

 var tilePositionX = (row - col) * tile.height;

 // Center the grid horizontally
 tilePositionX += (canvas.width / 2) - (tile.width / 2);

 var tilePositionY = (row + col) * (tile.height / 2);

 if (tileMap[row] != null && tileMap[row][col] != null) {
 tilePositionY -= building.height - tile.height;
 tilePositionX -= (building.width / 2) - (tile.width / 2);
 c.drawImage(building,
 Math.round(tilePositionX),
 Math.round(tilePositionY),
 building.width,
 building.height);
 } else {
 c.drawImage(tile, Math.round(tilePositionX), Math.round(tilePositionY),
tile.width, tile.height);
 }
 }
}

Making It Isometric | 55

Figure 2-9. Placing buildings on the bottom center of the tile

The entire example is available in the code repository, called ex13-isogrid-build-
ings.html.

So far, we have used the grid only to store whether something should be shown or not:
we’re only keeping track of which tiles are occupied, not what’s placed on them. Ob-
viously, our game will need a more complex object structure, especially if we want to
place buildings that occupy more than one tile, such as a cinema (2×2 tiles) or a hotel
(2×2).

The approach that we’re going to use in order to prevent the user from placing buildings
on top of each other will be to check whether the tile on which the user clicked contains
an special object (called BuildingPortion) that will give us a set of coordinates to the
main tile that contains the “real” building object. Figure 2-10 shows this concept.

Figure 2-10. Calculating building locations

56 | Chapter 2: Making It Isometric

In Figure 2-10:

• Buildings of type A (such as objId = 3 or 4) have a dimension of 2×2 tiles.

• Buildings of type B have a dimension of 2×1 tiles (objId = 2).

• Buildings of type C have a dimension of 1×1 tiles (objId = 1).

Querying the position 3, 2 in the grid, for example, would indicate that if we move one
tile to the left and one tile down, we’re going to find the building with objId = 3. These
positions are created automatically when we place each building.

Example 2-4 (ex13-isogrid-buildings-alt.html) shows how to implement this idea, and
you can see the result in Figure 2-11.

Example 2-4. Implementing building location tracking

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <title>Example 13 - (Placing buildings)</title>

 <script>
 var Cinema = function(instanceId) {
 this.buildingTypeId = 1; // It's a cinema
 this.instanceId = null;

 this.texture = new Image();
 this.texture.src = "../img/cinema.png";

 this.width = this.texture.width;
 this.height = this.texture.height;

 this.tileWidth = 2;
 this.tileHeight = 2;
 }

 var BuildingPortion = function(buildingTypeId, x, y) {
 this.buildingTypeId = buildingTypeId;
 this.x = x;
 this.y = y;
 }

 window.onload = function () {
 var grid = {
 width: 10,
 height: 10
 }

 var canvas = document.getElementById('myCanvas');
 var c = canvas.getContext('2d');

 var tileMap = [];

Making It Isometric | 57

 var tile = new Image();
 tile.src = "../img/tile.png";

 var buildingCounter = 0; // In reality, the building count is being
 // performed on the server side
 // in the database

 canvas.addEventListener('mousedown', handleMouseDown, false);

 draw();

 function handleMouseDown(e) {
 var gridOffsetY = grid.height;
 var gridOffsetX = grid.width;

 // Take into account the offset on the X axis
 // caused by centering the grid horizontally
 gridOffsetX += (canvas.width / 2) - (tile.width / 2);

 var col = (e.clientY - gridOffsetY) * 2;
 col = ((gridOffsetX + col) - e.clientX) / 2;

 var row = ((e.clientX + col) - tile.height) - gridOffsetX;

 row = Math.round(row / tile.height);
 col = Math.round(col / tile.height);

 // Create the building object
 var cinema = new Cinema(buildingCounter);

 // Check the boundaries!
 if (row >= 0 &&
 col >= 0 &&
 row <= grid.width &&
 col <= grid.height) {

 tileMap[row] = (tileMap[row] === undefined) ? [] : tileMap[row];

 // Do we have enough space to place this building on the grid?
 if (((row+1) - cinema.tileWidth) < 0 || ((col+1) - cinema.tileHeight) < 0) {
 alert("Invalid Location!\nPart of the building will appear outside the grid.");
 return;
 }

 // Now check that the tiles that the building
 // will occupy are not occupied by other buildings
 for (var i = (row+1) - cinema.tileWidth; i <= row; i++) {
 for (var j = (col+1) - cinema.tileHeight; j <= col; j++) {
 if (tileMap[i] != undefined && tileMap[i][j] != null) {
 alert("There's another building there!")
 return;
 }
 }
 }

58 | Chapter 2: Making It Isometric

 // Place the building
 for (var i = (row+1) - cinema.tileWidth; i <= row; i++) {
 for (var j = (col+1) - cinema.tileHeight; j <= col; j++) {
 tileMap[i] = (tileMap[i] == undefined) ? [] : tileMap[i];

 tileMap[i][j] = (i == row && j == col) ? // Forced line break
 cinema : // Forced line break
 new BuildingPortion(cinema.buildingTypeId, i, j);
 }
 }

 buildingCounter++;

 draw();
 }
 }

 function draw() {

 c.clearRect (0, 0, canvas.width, canvas.height);

 for (var col = 0; col < 10; col++) {
 for (var row = 0; row < 10; row++) {

 var tilePositionX = (row - col) * tile.height;

 // Center the grid horizontally
 tilePositionX += (canvas.width / 2) - (tile.width / 2);

 var tilePositionY = (row + col) * (tile.height / 2);

 if (tileMap[row] != null && tileMap[row][col] != null) {
 tilePositionY -= tileMap[row][col].height - tile.height;
 tilePositionX -= (tileMap[row][col].width / 2) - (tile.width / 2);

 if (!(tileMap[row][col] instanceof BuildingPortion)) {
 c.drawImage(tileMap[row][col].texture,
 Math.round(tilePositionX),
 Math.round(tilePositionY),
 tileMap[row][col].width,
 tileMap[row][col].height);
 }
 } else {
 c.drawImage(tile, Math.round(tilePositionX), Math.round(tilePositionY),
tile.width, tile.height);
 }
 }
 }
 }
 }
 </script>
 </head>
 <body>
 <canvas id="myCanvas" width="600" height="300"></canvas>

Making It Isometric | 59

 </body>
</html>

Figure 2-11. Screenshot of Example 2-4

Unlike the rectangular grid used in previous sections, showing only the tiles that we
need on an isometric grid requires a bit more work and additional iterations. Fig-
ure 2-12 shows that if we scroll up and start the column iterations on 1 instead of 0,
there’s an entire set of tiles that will not show up, as they depend on both column and
row iterations.

An easy way to solve this situation is to use our click routine again and grab the tiles
that are being shown in the top-left, top-right, bottom-left, and bottom-right corners
in the following way:

var pos_TL = translatePixelsToMatrix(canvas, tile, 1, 1);
var pos_BL = translatePixelsToMatrix(canvas, tile, 1, canvas.height);
var pos_TR = translatePixelsToMatrix(canvas, tile, canvas.width, 1);
var pos_BR = translatePixelsToMatrix(canvas, tile, canvas.width, canvas.height);

var startRow = pos_TL.row;
var startCol = pos_TR.col;
var rowCount = pos_BR.row + 1;
var colCount = pos_BL.col + 1;

startRow = (startRow < 0) ? 0 : startRow;
startCol = (startCol < 0) ? 0 : startCol;

// Place the artificial limit
rowCount = (rowCount > grid.width) ? grid.width : rowCount;
colCount = (colCount > grid.height) ? grid.height : colCount;

60 | Chapter 2: Making It Isometric

for (var row = startRow; row < rowCount; row++) {
 for (var col = startCol; col < colCount; col++) {

 // ...
 }
}

The translatePixelsToMatrix() function looks like this:

function translatePixelsToMatrix(canvas, tile, x, y) {
 var gridOffsetY = (grid.height * zoomHelper.level) + scrollPosition.y;
 var gridOffsetX = (grid.width * zoomHelper.level);

 // By default the grid appears centered horizontally
 gridOffsetX += (canvas.width / 2) - ((tile.width / 2) * zoomHelper.level) +
scrollPosition.x;

 var col = (2 * (y - gridOffsetY) - x + gridOffsetX) / 2;
 var row = x + col - gridOffsetX - tile.height;

 col = Math.round(col / tile.height);
 row = Math.round(row / tile.height);

Figure 2-12. Even though the tile 0,0 is outside the screen, we still need to cycle through column 0
(and row 0); otherwise, some of the other tiles (that should be printed) won’t be shown

Making It Isometric | 61

 return {
 row: row,
 col: col
 }
}

We will use this improved approach in the next chapters as well as in the final game.

62 | Chapter 2: Making It Isometric

CHAPTER 3

Interface Considerations

There’s much more to building a great-looking game than just laying out buildings on
a grid. A working game requires ways for users to communicate with the game, and as
games move toward mobile delivery, that need for communication changes. User ex-
pectations of mobile devices are often different from their expectations of desktop
computers, and the devices themselves add new complexities.

GUI Design and Interaction in Web Games
Graphical user interface (GUI) and human-computer interaction (HCI) are extremely
critical areas in application development but are sometimes overlooked by developers.
Companies and applications such as Apple, Google, and Facebook were able to become
successful in part due to their excellent design usability guidelines. They require con-
sistency, simplicity, responsiveness, and minimal design across all their products. Of
course, video games (including ours) are no exception to this rule, but there is one big
gotcha that you need to keep in mind: unlike other sorts of applications, our GUI has
to be comfortably usable on both desktop and mobile devices.

Knowing this, we can work out a simple set of recommendations to follow when de-
signing it:

• We can’t rely on mouse hovers to give feedback or to present tooltips.
Touchscreens have only two states: either you are touching the screen or you aren’t.

• Having no tooltips means that icons and buttons must communicate very clearly
what they are going to do.

• We can’t rely on right clicks either, as mobile devices won’t have that functionality.

• In isometric games, presenting the game in landscape mode is a better use of screen
real state than presenting it in portrait mode.

63

• Important information, such as the account balance, is better displayed on the top
and navigational elements are better displayed on the bottom-left corner. (Re-
member that 90% of the world is right-handed, and they’ll probably be using their
left hand to hold the device while they use their able hand, the right one, to click,
as shown in Figure 3-1.)

Figure 3-1. Phone as held by the right-handed majority

• Due to the very small size of mobile phones, we should keep interface clutter to an
absolute minimum.

• We’re going to assume that scrolling down/up with your PC’s mouse is the same
as zooming in/out with two fingers (almost a standard practice nowadays).

• We’re also going to avoid presenting floating windows and will use scrollable pan-
els instead. These panels will appear on the right of the screen.

Some HCI and user experience (UE) guidelines for mobile devices in-
clude the following:

• iOS Human Interface Guidelines, by Apple: http://developer.apple
.com/library/ios/#documentation/UserExperience/Conceptual/Mo
bileHIG/Introduction/Introduction.html

• User Experience Guidelines, by Google (for Android devices): http:
//developer.android.com/guide/practices/ui_guidelines/index.html

In essence, our application GUI will look similar to Figure 3-2.

64 | Chapter 3: Interface Considerations

http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/MobileHIG/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/MobileHIG/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/MobileHIG/Introduction/Introduction.html
http://developer.android.com/guide/practices/ui_guidelines/index.html
http://developer.android.com/guide/practices/ui_guidelines/index.html

Figure 3-2. A rough sketch of the interface

Each of the navigation buttons will enable a tool or perform a particular action. In our
game, we’re going to be adding the following tools:

• A Select tool to select individual buildings

• A Move button that toggles the scroll position modifier, which can be used with
the mouse or by dragging a finger across the screen when using a mobile device or
a tablet

• Zoom In and Zoom Out buttons that will allows us to enlarge the grid and the
object inside it, when we click on the screen

• A Rotate button to rotate the values of the matrix counterclockwise

• A Demolish button to destroy a specific building

Additionally, we’re going to add support for the following features:

• Using the mouse wheel to zoom in or zoom out without having to toggle the zoom
buttons

• Using the keys on our keyboard to scroll the grid or to zoom in, zoom out, or rotate
the grid

Implementing the GUI
The HEAD section of the HTML code of our page is also going to include some special
tags.

Because we’re going to be handling the zooming in a different way than the one included
by default in some mobile browsers, we need to disable the default functionality
completely:

Implementing the GUI | 65

<meta name="viewport" content="width=device-width, initial-scale=1, user-
scalable=no" />

Devices like the Apple iPhone, Apple iPad, and some Android phones allow the user
to add our site to their home screen. We can change the icon of our application by using
the following tags:

<link rel="apple-touch-icon" href="../img/touristResortIcon.png" />
<link rel="apple-touch-icon-precomposed" href="../img/touristResortIcon.png"/>

If the user has added the application to her home screen, there’s a way to hide the
browser chrome GUI such as a the URL bar, back/forward buttons, and so on:

<meta name="apple-mobile-web-app-capable" content="yes" />

Finally, we are going to add the Google Chrome frame tag to display our game in older
browsers:

<meta http-equiv="X-UA-Compatible" content="chrome=1" />

The GUI will be contained inside a div with its id attribute set to ui. Then we can listen
for any events happening to it or any of its child elements:

var ui = document.getElementById('ui');

// Listen GUI events
ui.addEventListener('mouseup', handler, false);

The HTML code of our GUI is going to look like this:

<div id="ui">
 <div id="top">
 Account Balance: 0 Coins
 </div>
 <div id="tools">

 <li id="select">
 <li id="move">
 <li id="zoomIn">
 <li id="zoomOut">
 <li id="rotate">
 <li id="demolish">

 </div>
 <div id="panel-container" class="hidden">
 Build
 <div id="panel">
 <h3>Choose a building:</h3>
 <ul id="buildings">

 <h2>Building Name</h2>
 <p>
 Description

 $Cost
 </p>

66 | Chapter 3: Interface Considerations

 <h2>Building Name</h2>
 <p>
 Description

 $Cost
 </p>

 <h2>Building Name</h2>
 <p>
 Description

 $Cost
 </p>

 </div>
 </div>
</div>

And the click handling function is going to look like this:

var ui = document.getElementById('ui');

// Listen for GUI events
ui.addEventListener('mouseup', function(e) {
 switch(e.target.getAttribute('id')) {
 case 'panel-toggle':
 // ...
 break;
 case 'select':
 // ...
 break;
 case 'move':
 // ...
 break;
 case 'zoomIn':
 // ...
 break;
 case 'zoomOut':
 // ...
 break;
 case 'rotate':
 // ...
 break;
 case 'demolish':
 // ...
 break;
 }
}, false);

Implementing the GUI | 67

Notice that the HTML code shown before the panel and the account balance contains
faux values; don’t worry, we’ll populate these with real values later on when we inte-
grate the client-side scripts with the server-side scripts.

Mobile devices will detect click, mouseDown, mouseMove, mouseUp, and DOMMouseScroll
events, but impose a penalty of between 250 and 600 milliseconds depending on the
hardware. In order to alleviate this issue, we need to detect whether the device supports
touch events, then use native touch and gesture events such as touchstart, touchmove,
and touchend, and detect gestures by using gesturestart or gestureend.

We can detect and manage both clicks and touch events by using the Modernizr library.
Modernizr.touch returns true if the device supports touch events, which means that we
can do this:

var pointer = {
 DOWN: 'mousedown',
 UP: 'mouseup',
 MOVE: 'mousemove'
};

if (Modernizr.touch){
 pointer.DOWN = 'touchstart';
 pointer.UP = 'touchend';
 pointer.MOVE = 'touchmove';
}

window.addEventListener('resize', function() { doResize(canvas); }, false);
canvas.addEventListener(pointer.DOWN, handleMouseDown, false);
canvas.addEventListener(pointer.MOVE, handleDrag, false);
document.body.addEventListener(pointer.UP, handleMouseUp, false);

if (Modernizr.touch){
 // Detect gestures
 document.body.addEventListener('gestureend', handleGestureEnd, false);

} else {
 document.body.addEventListener('keydown', handleKeyDown, false);

 // Detect scrolling
 document.body.addEventListener('mousewheel', handleScroll, false);
 document.body.addEventListener('DOMMouseScroll', handleScroll, false);

}

Now that our codebase is getting bigger and more complex, we’re also going to create
a Game class to simplify the amount of work; we’ll also divide the code on the page into
multiple scripts.

The complete code in Example 3-1 is online as ex14-gui.html in the official code repo-
sitory. See Figure 3-3. You can also find ex14-gui-sound.html in the code repository; it
is the same example with music playing in the background.

68 | Chapter 3: Interface Considerations

Figure 3-3. Screenshot of Example 3-1

Example 3-1. GUI (HTML)

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />

 <!-- We'll take care of the zoom ourselves -->
 <meta name="viewport" content="width=device-width,initial-scale=1,
user-scalable=no" />

 <!-- iPhone icon + chromeless browser -->
 <meta name="apple-mobile-web-app-capable" content="yes" />

 <!-- iPhone homescreen icon -->
 <link rel="apple-touch-icon" href="../img/touristResortIcon.png" />
 <link rel="apple-touch-icon-precomposed" href="../img/touristResortIcon.png"/>

 <!-- Chrome Frame -->
 <meta http-equiv="X-UA-Compatible" content="chrome=1" />

 <title>Example 14 - Graphical User Interface</title>

 <link rel="stylesheet" href="ui-style.css" />
 <script src="../utils/modernizr-1.7.min.js" charset="utf-8"></script>
 <script src="game-ex14.js" charset="utf-8"></script>
 <script>

Implementing the GUI | 69

 // Enums
 var Keys = {
 UP: 38,
 DOWN: 40,
 LEFT: 37,
 RIGHT: 39,
 W: 87,
 A: 65,
 S: 83,
 D: 68,
 Z: 90,
 X: 88,
 R: 82
 }

 var Tools = {
 current: 4, // Default tool
 /* - */
 MOVE: 0,
 ZOOM_IN: 1,
 ZOOM_OUT: 2,
 DEMOLISH: 3,
 SELECT: 4,
 BUILD: 5
 }

 window.onload = function () {

 var canvas = document.getElementById('gameCanvas');
 var game = document.getElementById('game');

 // Initialize the game object
 var g = new Game(canvas, game, 500, 500);

 var pointer = {
 DOWN: 'mousedown',
 UP: 'mouseup',
 MOVE: 'mousemove'
 };

 if (Modernizr.touch){
 pointer.DOWN = 'touchstart';
 pointer.UP = 'touchend';
 pointer.MOVE = 'touchmove';
 }

 // Set up the event listeners
 window.addEventListener('resize', function() {
 g.doResize();
 }, false);
 canvas.addEventListener(pointer.DOWN, function(e) {
 g.handleMouseDown(e);
 }, false);

70 | Chapter 3: Interface Considerations

 canvas.addEventListener(pointer.MOVE, function(e) {
 g.handleDrag(e);
 }, false);
 document.body.addEventListener(pointer.UP, function(e) {
 g.handleMouseUp(e);
 }, false);

 if (Modernizr.touch){
 // Detect gestures
 document.body.addEventListener('gestureend', function(e)
{ g.handleGestureEnd(e); }, false);

 } else {
 document.body.addEventListener('keydown', function(e) { g.handleKeyDown(e); },
false);

 // Detect mousewheel scrolling
 document.body.addEventListener('mousewheel', function(e) { g.handleScroll(e); },
false);
 document.body.addEventListener('DOMMouseScroll', function(e)
{ g.handleScroll(e); }, false);

 }

 // Listen for GUI events
 var ui = document.getElementById('ui');
 ui.addEventListener(pointer.UP, function(e) {
 switch(e.target.getAttribute('id')) {
 case 'panel-toggle':
 var panelContainer = document.getElementById('panel-container');
 var classes = panelContainer.getAttribute('class');

 if (classes != null && classes.length > 0) {
 panelContainer.setAttribute('class', '');
 document.getElementById('panel-toggle').innerHTML = 'Cancel';
 } else {
 panelContainer.setAttribute('class', 'hidden');
 document.getElementById('panel-toggle').innerHTML = 'Build';
 }
 break;
 case 'select':
 selectTool(Tools.SELECT, document.getElementById('select'));
 break;
 case 'move':
 selectTool(Tools.MOVE, document.getElementById('move'));
 break;
 case 'zoomIn':
 selectTool(Tools.ZOOM_IN, document.getElementById('zoomIn'));
 break;
 case 'zoomOut':
 selectTool(Tools.ZOOM_OUT, document.getElementById('zoomOut'));
 break;
 case 'rotate':
 g.rotateGrid();
 g.draw();

Implementing the GUI | 71

 break;
 case 'demolish':
 selectTool(Tools.DEMOLISH, document.getElementById('demolish'));
 break;
 default:
 // He didn't click on any option and actually click
 // on an empty section of the UI, fallback to the canvas.
 e.srcElement = canvas;
 e.target = canvas;
 e.toElement = canvas;

 g.handleMouseDown(e);

 break;
 }
 }, false);
 }

 function selectTool(tool, elem) {

 // Remove the "active" class from any element inside the div#tools ul
 for (var i = 0, x = elem.parentNode.childNodes.length; i < x; i++) {
 if (elem.parentNode.childNodes[i].tagName == "LI") {
 elem.parentNode.childNodes[i].className = null;
 }
 }

 elem.className += "active";

 switch(tool) {
 case Tools.SELECT:
 Tools.current = Tools.SELECT;
 break;
 case Tools.MOVE:
 Tools.current = Tools.MOVE;
 break;
 case Tools.ZOOM_IN:
 Tools.current = Tools.ZOOM_IN;
 break;
 case Tools.ZOOM_OUT:
 Tools.current = Tools.ZOOM_OUT;
 break;
 case Tools.DEMOLISH:
 Tools.current = Tools.DEMOLISH;
 break;
 }

 }
 </script>
 </head>
 <body>
 <div id="game">

 <canvas id="gameCanvas" width="1" height="1"></canvas>
 <div id="ui">

72 | Chapter 3: Interface Considerations

 <div id="top">
 Account Balance: 0 Coins
 </div>
 <div id="tools">

 <li id="select" class="active">
 <li id="move">
 <li id="zoomIn">
 <li id="zoomOut">
 <li id="rotate">
 <li id="demolish">

 </div>
 <div id="panel-container" class="hidden">
 Build
 <div id="panel">
 <h3>Choose a building:</h3>
 <ul id="buildings">

 <h2>Building Name</h2>
 <p>
 Description

 $Cost
 </p>

 <h2>Building Name</h2>
 <p>
 Description

 $Cost
 </p>

 <h2>Building Name</h2>
 <p>
 Description

 $Cost
 </p>

 </div>
 </div>
 </div>

 </div>
 </body>
</html>

Implementing the GUI | 73

Example 3-2. Game function (JavaScript)

// Game class for example 14
function Game(canvas, game, gridSizeW, gridSizeH) {
 this.started = true;
 this.gameContainer = game;
 this.canvas = canvas;

 // Get the 2D Context
 this.c = canvas.getContext('2d');

 // Can we run the game?
 var missingDeps = [];
 var dependencies = [Modernizr.rgba,
 Modernizr.canvas,
 Modernizr.borderradius,
 Modernizr.boxshadow,
 Modernizr.cssgradients];

 for (var i = 0, dep = dependencies.length; i < dep; i++) {
 if (!dependencies[i]) {
 missingDeps.push(dependencies[i]);
 }
 }

 if (missingDeps.length !== 0) {
 var msg = "This browser doesn't include some of the ";
 msg += "technologies needed to play the game";
 alert(msg);
 this.started = false;
 return;
 }

 // Tile texture
 this.tile = new Image();
 this.tile.src = "../img/tile.png";

 // Grid dimensions
 this.grid = {
 width: gridSizeW,
 height: gridSizeH
 }

 // Tile map matrix
 this.tileMap = [];

 // Drag helper
 this.dragHelper = {
 active: false,
 x: 0,
 y: 0
 }

 // Zoom helper, 3 zoom levels supported
 this.zoomHelper = {
 level: 1,

74 | Chapter 3: Interface Considerations

 NORMAL: 1,
 FAR: 0.50,
 CLOSE: 2
 }

 // Scroll position helper, keeps track of scrolling
 this.scrollPosition = { x: 0, y: 0 }

 // Default zoom level
 this.tile.width *= this.zoomHelper.level;
 this.tile.height *= this.zoomHelper.level;

 // Initially center the starting point horizontally and vertically
 var nspy = (this.grid.height * this.zoomHelper.level) + this.scrollPosition.y;
 var nspx = (this.grid.width * this.zoomHelper.level) + this.scrollPosition.x;
 this.scrollPosition.y -= nspy;
 this.scrollPosition.x -= nspx;

 this.doResize();
 this.draw();
}

Game.prototype.handleGestureEnd = function(e) {
 e.preventDefault();

 if (Math.floor(e.scale) == 0) {
 this.zoomIn();
 } else {
 this.zoomOut();
 }
}

Game.prototype.handleScroll = function(e) {
 e.preventDefault();

 var scrollValue = (e.wheelDelta == undefined) ? e.detail * −1 : e.wheelDelta;

 if (scrollValue >= 0) {
 this.zoomInt();
 } else {
 this.zoomOut();
 }
}

Game.prototype.handleKeyDown = function(e) {
 switch (e.keyCode) {
 case Keys.UP:
 case Keys.W:
 this.scrollPosition.y += 20;
 break;
 case Keys.DOWN:
 case Keys.S:
 this.scrollPosition.y -= 20;
 break;

Implementing the GUI | 75

 case Keys.LEFT:
 case Keys.A:
 this.scrollPosition.x += 20;
 break;
 case Keys.RIGHT:
 case Keys.D:
 this.scrollPosition.x -= 20;
 break;
 case Keys.X:
 this.zoomIn();
 break;
 case Keys.Z:
 this.zoomOut();
 break;
 case Keys.R:
 this.rotateGrid();
 break;
 }

 this.draw();
}

Game.prototype.handleDrag = function(e) {
 var x, y;
 e.preventDefault();

 if (Modernizr.touch) {
 x = e.touches[0].pageX;
 y = e.touches[0].pageY;
 } else {
 x = e.clientX;
 y = e.clientY;
 }

 switch (Tools.current) {
 case Tools.MOVE:
 if (this.dragHelper.active) {
 // Smooth scrolling effect
 this.scrollPosition.x -= (this.dragHelper.x - x) / 18;
 this.scrollPosition.y -= (this.dragHelper.y - x) / 18;
 }
 this.draw();
 break;
 }
}

Game.prototype.handleMouseUp = function(e) {
 e.preventDefault();

 switch (Tools.current) {
 case Tools.MOVE:
 this.dragHelper.active = false;
 break;
 }
}

76 | Chapter 3: Interface Considerations

Game.prototype.handleMouseDown = function(e) {
 var x, y;
 e.preventDefault();

 if (Modernizr.touch) {
 x = e.touches[0].pageX;
 y = e.touches[0].pageY;
 } else {
 x = e.clientX;
 y = e.clientY;
 }

 switch (Tools.current) {
 case Tools.BUILD:

 break;
 case Tools.MOVE:
 this.dragHelper.active = true;
 this.dragHelper.x = x;
 this.dragHelper.y = y;
 break;
 case Tools.ZOOM_IN:
 this.zoomIn();
 break;
 case Tools.ZOOM_OUT:
 this.zoomOut();
 break;
 case Tools.DEMOLISH:

 var pos = this.translatePixelsToMatrix(x, y);

 if (this.tileMap[pos.row] != undefined &&
 this.tileMap[pos.row][pos.col] != undefined) {
 this.tileMap[pos.row][pos.col] = null;
 }

 break;
 }

 this.draw();
}

Game.prototype.doResize = function() {

 this.canvas.width = document.body.clientWidth;
 this.canvas.height = document.body.clientHeight;

 this.draw();
}

Game.prototype.translatePixelsToMatrix = function(x, y) {
 var tileHeight = this.tile.height * this.zoomHelper.level;
 var tileWidth = this.tile.width * this.zoomHelper.level;

Implementing the GUI | 77

 var zoomedHeight = (this.grid.height * this.zoomHelper.level);
 var gridOffsetY = zoomedHeight + this.scrollPosition.y;
 var gridOffsetX = (this.grid.width * this.zoomHelper.level);

 // By default the grid appears centered horizontally
 var zoomedWidth = ((tileWidth / 2) * this.zoomHelper.level;
 gridOffsetX += (this.canvas.width / 2) - zoomedWidth) + this.scrollPosition.x;

 var col = (2 * (y - gridOffsetY) - x + gridOffsetX) / 2;
 var row = x + col - gridOffsetX - tileHeight;

 col = Math.round(col / tileHeight);
 row = Math.round(row / tileHeight);

 return {
 row: row,
 col: col
 }
}

Game.prototype.draw = function(srcX, srcY, destX, destY) {
 srcX = (srcX === undefined) ? 0 : srcX;
 srcY = (srcY === undefined) ? 0 : srcY;
 destX = (destX === undefined) ? this.canvas.width : destX;
 destY = (destY === undefined) ? this.canvas.height : destY;

 this.c.clearRect (0, 0, this.canvas.width, this.canvas.height);
 this.c.fillStyle = '#0C3B00'; // Green background
 this.c.fillRect (0, 0, this.canvas.width, this.canvas.height);

 var pos_TL = this.translatePixelsToMatrix(1, 1);
 var pos_BL = this.translatePixelsToMatrix(1, this.canvas.height);
 var pos_TR = this.translatePixelsToMatrix(this.canvas.width, 1);
 var pos_BR = this.translatePixelsToMatrix(this.canvas.width,
 this.canvas.height);

 var startRow = pos_TL.row;
 var startCol = pos_TR.col;
 var rowCount = pos_BR.row + 1;
 var colCount = pos_BL.col + 1;

 startRow = (startRow < 0) ? 0 : startRow;
 startCol = (startCol < 0) ? 0 : startCol;

 rowCount = (rowCount > this.grid.width) ? this.grid.width : rowCount;
 colCount = (colCount > this.grid.height) ? this.grid.height : colCount;

 var tileHeight = this.tile.height * this.zoomHelper.level;
 var tileWidth = this.tile.width * this.zoomHelper.level;

 for (var row = startRow; row < rowCount; row++) {
 for (var col = startCol; col < colCount; col++) {
 var xpos = (row - col) * tileHeight + (this.grid.width *
 this.zoomHelper.level);

78 | Chapter 3: Interface Considerations

 xpos += (this.canvas.width / 2) - ((tileWidth / 2) *
 this.zoomHelper.level) + this.scrollPosition.x;

 var ypos = (row + col) * (tileHeight / 2) + (this.grid.height *
 this.zoomHelper.level) + this.scrollPosition.y;

 if (this.tileMap[row] != null && this.tileMap[row][col] != null) {
 // Place building
 } else {
 if (Math.round(xpos) + tileWidth >= srcX &&
 Math.round(ypos) + tileHeight >= srcY &&
 Math.round(xpos) <= destX &&
 Math.round(ypos) <= destY) {

 this.c.drawImage(this.tile,
 Math.round(xpos),
 Math.round(ypos),
 tileWidth,
 tileHeight);

 }
 }

 }
 }
}

Game.prototype.zoomIn = function() {
 switch(this.zoomHelper.level) {
 case this.zoomHelper.NORMAL:
 this.zoomHelper.level = this.zoomHelper.CLOSE;
 break;
 case this.zoomHelper.FAR:
 this.zoomHelper.level = this.zoomHelper.NORMAL;
 break;
 case this.zoomHelper.CLOSE:
 return;
 }

 // Center the view
 this.scrollPosition.y -= (this.grid.height * this.zoomHelper.level) +
this.scrollPosition.y;
 this.scrollPosition.x -= (this.grid.width * this.zoomHelper.level) +
this.scrollPosition.x;
}

Game.prototype.zoomOut = function() {
 switch(this.zoomHelper.level) {
 case this.zoomHelper.NORMAL:
 this.zoomHelper.level = this.zoomHelper.FAR;
 break;
 case this.zoomHelper.CLOSE:
 this.zoomHelper.level = this.zoomHelper.NORMAL;
 break;

Implementing the GUI | 79

 case this.zoomHelper.FAR:
 return;
 }

 // Center the view
 this.scrollPosition.y -= (this.grid.height * this.zoomHelper.level) +
this.scrollPosition.y;
 this.scrollPosition.x -= (this.grid.width * this.zoomHelper.level) +
this.scrollPosition.x;
}

Game.prototype.rotateGrid = function(mW, mH, sW, sH) {
 var m = [];

 mW = (mW === undefined) ? this.grid.width : mW;
 mH = (mH === undefined) ? this.grid.height : mH;

 sW = (sW === undefined) ? 0 : sW;
 sH = (sH === undefined) ? 0 : sH;

 for (var i = sW; i < mW; i++) {
 for (var j = sH; j < mH; j++) {
 var row = (mW - j) - 1;

 if (this.tileMap[row] !== undefined && this.tileMap[row][i]) {
 m[i] = (m[i] === undefined) ? [] : m[i];
 m[i][j] = this.tileMap[row][i];
 }
 }
 }

 this.tileMap = m;
}

80 | Chapter 3: Interface Considerations

CHAPTER 4

HTML5 Sound and Processing
Optimization

HTML5 brings game designers much more than the canvas element. Native support
for sound (and video) is one key piece, letting you write games for which you manage
sound in the same JavaScript environment as the graphics. Other pieces improve your
JavaScript, whether breaking up tasks with Web Workers or letting you keep infor-
mation on the player’s device with local and session storage.

Adding Sound with the Audio Element
Previous versions of the HTML spec supported three ways of listening to an audio file
in our page. We could:

• Use the object or embed tags to embed a file or a plugin such as LiveAudio (Netscape
Navigator) or an ActiveMovie Control (Internet Explorer). As time went by, other
plugins started to enter the market, such as Macromedia Flash (now Adobe Flash),
REAL Player, or Apple’s QuickTime, among others. To embed a MIDI or WAV
file, we could either use <embed src="music.mid" autostart="true" loop="true">
or embed a proprietary third-party plugin such as the Macromedia Flash Player
and play the sound through our SWF file.

• Insert a Java Applet and play the sound through it.

• Add the bgsound attribute to the body element of the page (Internet Explorer only).

Browsers used to include varying sets of plugins, which meant that our sounds might
play in one browser but not on another, even if both were installed on the same com-
puter.

Luckily, with the advent of HTML5, we also gained the ability to play audio and video
files natively through the use of the <audio> and <video> tags.

81

Unfortunately, the technological limitations in previous versions of HTML have been
replaced by legal limitations in HTML5. Audio (and video) is encoded or decoded with
the use of codecs, which are small software libraries that lets us encode/decode an audio
or video data file or stream implementing a particular algorithm. Some algorithms are
optimized for speed; other algorithms are optimized for lossless quality; just like con-
ventional software, some of them are royalty-free and open and others are licensed.

In the case of “open” codecs, some companies such as Apple and Microsoft worry
that they might be infringing a patent, which could make them liable in the case of a
lawsuit—this is why they don’t support them in their browsers. The opposite scenario
is that other companies, such as the Mozilla Foundation or Opera Software, haven’t
made the necessary arrangements needed in order to use some licensed codecs yet.

Figure 4-1 shows which audio codecs are supported by each browser.

Figure 4-1. Support for audio codecs

Hopefully, by the time the HTML5 spec is finished, all browser vendors will have agreed
to use a generic codec that works across all platforms. In the meantime, the W3C
provides an elegant way of handling these sorts of problems with the ability to define
“fallback audio sources.”

To embed an audio player, all we need to do is to create an audio tag:

<audio src="../sounds/song.ogg" type="audio/ogg" controls />

which would show an audio player with a play/pause control (thanks to the control
attribute’s presence). If we press the “Play” button, it will attempt to play the sound
identified by the src attribute. However, we may find ourselves using a browser that
doesn’t support that particular file format/codec, in which case we can do this:

<audio controls>
 <source src="../sounds/song.mp3" type="audio/mpeg">
 <source src="../sounds/song.ogg" type="audio/ogg">
</audio>

82 | Chapter 4: HTML5 Sound and Processing Optimization

Instead of defining a single src parameter, the HTML5 audio tag allows us to define
multiple audio files. If song.mp3 can’t be played for some reason, the browser will
attempt to play the alternative song.ogg. If we had more sources, it would try to play
every single one on the list until all of them failed or one of them worked. In addition
to the control attribute, the HTML5 audio tag also supports other optional attributes:

loop
Lets us loop the media file specified in the src attribute or in a source tag

autoplay
Starts playing the sound as soon as it finishes loading the source

preload
Lets us define our source preload strategy:

preload="none”
Doesn’t preload the file, which will be loaded when the user presses the play
button

preload="metadata”
Preloads only the metadata of the file

preload="auto”
Lets the browser handle the preload of the file (which usually means to preload
the entire file)

Of course, we can also create and use an HTML5 audio object using JavaScript instead
of including an audio element in the document, as shown in Example 4-1.

Example 4-1. Creating HTML5 audio with JavaScript

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <title>Example 15 (HTML5 Audio)</title>
 <script>
 window.onload = function() {

 // Define an array with the audio files to try
 var sources = [
 ["../sounds/song.mp3", "audio/mpeg"],
 ["../sounds/song.ogg", "audio/ogg"]
];

 // Create the HTML5 Audio tag
 var audio = document.createElement('audio');

 // Cycle the "sources" array
 for (var i = 0; i < sources.length; i++) {

 // Later, you will learn how to check if a browser supports a given type

Adding Sound with the Audio Element | 83

 // Create a source parameter
 var src = document.createElement('source');
 // Add both src and type attributes
 src.setAttribute("src", sources[i][0]);
 src.setAttribute("type", sources[i][1]);

 // Append the source to the Audio tag
 audio.appendChild(src);
 }

 // Attempt to play the sound
 audio.play();

 }
 </script>
 </head>
 <body>
 HTML5 Audio tag example.
 </body>
</html>

The code repository also contains a more efficient example, ex15-au-
dioPlayer-alt.html, with an alternative way of figuring out if the audio
format is supported by the browser.

Along with the HTML5 Audio and Video objects, modern browsers trigger a new set
of events called Media Events; a complete list is available at https://developer.mozilla
.org/En/Using_audio_and_video_in_Firefox.

Some of the events that we will be using in this book and in our game are:

canplaythrough
Triggered when the file download has almost finished and can be played in its
entirety

playing
Informs us if a sound is being played

ended
Triggered when playback has finished

Playback of HTML5 audio (and video) files is controlled using the following methods
and variables:

play()
Plays the media.

pause()
Pauses the media.

84 | Chapter 4: HTML5 Sound and Processing Optimization

https://developer.mozilla.org/En/Using_audio_and_video_in_Firefox
https://developer.mozilla.org/En/Using_audio_and_video_in_Firefox

currentTime
Allows us to get or set the current playback time, expressed in milliseconds.

Volume
Allows us to get or set the current volume, as a value ranging from 0.0 to 1.0.

An ongoing project in the Mozilla Foundation called the Audio Data
API allows developers to create and manipulate sounds with better ac-
curacy and a greater degree of control. (At the time of writing of this
book, the API is available only in Firefox and in the latest versions of
Chromium.) For more information, see https://wiki.mozilla.org/Audio
_Data_API.

Now that you understand the basics on how to use this technology and its capabilities,
you should also be aware of its limitations:

• Once you create an HTML5 audio object and start playing a sound, you can play
that sound only once at a time. If you want to play the same sound two times
simultaneously, you need an additional HTML5 audio object.

• There’s a limit to the number of simultaneous playbacks; this limit varies from
platform to platform. If you exceed that limit, you may experience errors that also
vary from platform to platform.

A good rule of thumb is to keep the number of simultaneous audio playbacks to three
(or fewer), as that is the playback limit on mobile OSs. Other platforms (such as Firefox
running in a PC) can support a larger number of simultaneous playbacks.

When discussing the HTML Canvas section, we combined several images in a single
image (called a sprite sheet) to optimize the number of requests made to the server, and
then we could reference a particular image inside the sprite sheet by showing the rec-
tangle of X1, Y1 and X2, Y2 (where X1, Y1, X2, Y2 are pixel coordinates). We can use
a similar technique with sounds by combining them into a single file (called a sound
sheet)—and instead of using pixel coordinates, we need to use time coordinates. (If you
are feeling fancy, you could also put different sounds in the left and right audio chan-
nels, which could help you optimize requests even more, at the expense of losing one
channel and playing sounds in mono.)

In our game, we’re going to be using a utility called SoundUtil that will handle sound
sheets and take care of maintaining a pool of audio objects for effective memory and
resource management.

SoundUtil uses a different approach than the one used in Example 7. Instead of creating
an HTML5 audio tag, it creates HTML5 audio objects. When you request the utility to
play a sound, you pass some parameters:

Adding Sound with the Audio Element | 85

https://wiki.mozilla.org/Audio_Data_API
https://wiki.mozilla.org/Audio_Data_API

• An array containing the files themselves and the format in which each file is
encoded

• A start time, expressed in seconds

• An end time, expressed in milliseconds

• A volume value

• A boolean indicating whether you want the sound to loop forever, in which case,
it will only respect the start time the first time it plays and won’t respect the value
passed as the end time

The play() method will call another method, getAudioObject(), that maintains a pool
of audio objects available for reuse and keeps track of the maximum number of simul-
taneous playbacks. If no objects are available on the pool, it will automatically generate
one unless the number of objects on the pool is equal to the maximum number of
simultaneous playbacks, in which case it will return a null value and no sound will be
played.

Once a sound finishes playing, we need to “free” the audio object to put it back in the
pool of available audio objects by calling the freeAudioObject() method.

The entire utility can be seen in Example 4-2.

Example 4-2. SoundUtil.js

// Maximum number of sound objects allowed in the pool
var MAX_PLAYBACKS = 6;
var globalVolume = 0.6;

function SoundUtil(maxPlaybacks) {
 this.maxPlaybacks = maxPlaybacks;
 this.audioObjects = []; // Pool of audio objects available for reutilization
}

SoundUtil.prototype.play = function(file, startTime, duration, volume, loop) {

 // Get an audio object from pool
 var audioObject = this.getAudioObject();
 var suObj = this;

 /**
 * No audio objects are available on the pool. Don't play anything.
 * NOTE: This is the approach taken by toy organs; alternatively you
 * could also add objects into a queue to be played later on
 */
 if (audioObject !== null) {
 audioObject.obj.loop = loop;
 audioObject.obj.volume = volume;

 for (var i = 0; i < file.length; i++) {
 if (audioObject.obj.canPlayType(file[i][1]) === "maybe" ||
 audioObject.obj.canPlayType(file[i][1]) === "probably") {
 audioObject.obj.src = file[i][0];

86 | Chapter 4: HTML5 Sound and Processing Optimization

 audioObject.obj.type = file[i][1];
 break;
 }
 }

 var playBack = function() {
 // Remove the event listener, otherwise it will
 // keep getting called over and over agian
 audioObject.obj.removeEventListener('canplaythrough', playBack, false);
 audioObject.obj.currentTime = startTime;
 audioObject.obj.play();

 // There's no need to listen if the object has finished
 // playing if it's playing in loop mode
 if (!loop) {
 setTimeout(function() {
 audioObject.obj.pause();
 suObj.freeAudioObject(audioObject);
 }, duration);
 }
 }

 audioObject.obj.addEventListener('canplaythrough', playBack, false);
 }
}

SoundUtil.prototype.getAudioObject = function() {
 if (this.audioObjects.length === 0) {
 var a = new Audio();
 var audioObject = {
 id: 0,
 obj: a,
 busy: true
 }

 this.audioObjects.push (audioObject);

 return audioObject;
 } else {
 for (var i = 0; i < this.audioObjects.length; i++) {
 if (!this.audioObjects[i].busy) {
 this.audioObjects[i].busy = true;
 return this.audioObjects[i];
 }
 }

 // No audio objects are free. Can we create a new one?
 if (this.audioObjects.length <= this.maxPlaybacks) {
 var a = new Audio();
 var audioObject = {
 id: this.audioObjects.length,
 obj: a,
 busy: true
 }

Adding Sound with the Audio Element | 87

 this.audioObjects.push (audioObject);

 return audioObject;
 } else {
 return null;
 }
 }
}

SoundUtil.prototype.freeAudioObject = function(audioObject) {
 for (var i = 0; i < this.audioObjects.length; i++) {
 if (this.audioObjects[i].id === audioObject.id) {
 this.audioObjects[i].currentTime = 0;
 this.audioObjects[i].busy = false;
 }
 }
}

To demonstrate how to use SoundUtil, we’re going to combine it with the very first
example shown in this book: the title screen. Example 4-3, ex16-soundUtil.html, is in
the examples folder of the code repository included with this book.

Example 4-3. Adding sounds to our title screen

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <title>Example 16 - Title Screen with Sound</title>

 <!-- We're included the soundutil as an external file -->
 <script src="soundutil.js" charset="utf-8"></script>
 <script>

 window.onload = function () {
 var su = null;
 var sources = [
 ["../sounds/title.mp3", "audio/mp3"],
 ["../sounds/title.ogg", "audio/ogg"]
];

 var canvas = document.getElementById('myCanvas');
 var c = canvas.getContext('2d');

 var State = {
 _current: 0,
 INTRO: 0,
 LOADING: 1,
 LOADED: 2
 }

 window.addEventListener('click', handleClick, false);
 window.addEventListener('resize', doResize, false);

 doResize();

88 | Chapter 4: HTML5 Sound and Processing Optimization

 // Check if the current browser supports playing MP3 or OGG files
 if (soundIsSupported()) {
 // Play the title screen music
 playTitleMusic();
 }

 function playTitleMusic() {
 if (su) {
 su.play(sources, 0, 156000, globalVolume, false);
 }
 }

 function soundIsSupported() {
 var a = new Audio();
 var failures = 0;

 for (var i = 0; i < sources.length; i++) {
 if (a.canPlayType(sources[i][1]) !== "maybe" &&
 a.canPlayType(sources[i][1]) !== "probably") {
 failures++;
 }
 }

 if (failures !== sources.length) {
 su = new SoundUtil()
 return true;
 } else {
 return false;
 }
 }

 function handleClick() {
 if (State._current !== State.LOADING) {
 State._current = State.LOADING;
 fadeToWhite();
 }
 }

 function doResize() {
 canvas.width = document.body.clientWidth;
 canvas.height = document.body.clientHeight;

 switch (State._current) {
 case State.INTRO:
 showIntro ();
 break;
 }
 }

 function fadeToWhite(alphaVal) {
 // If the function hasn't received any parameters, start with 0.02
 var alphaVal = (alphaVal == undefined) ? 0.02 : parseFloat(alphaVal) + 0.02;

Adding Sound with the Audio Element | 89

 // Set the color to white
 c.fillStyle = '#FFFFFF';
 // Set the Global Alpha
 c.globalAlpha = alphaVal;

 // Make a rectangle as big as the canvas
 c.fillRect(0, 0, canvas.width, canvas.height);

 if (alphaVal < 1.0) {
 setTimeout(function() {
 fadeToWhite(alphaVal);
 }, 30);
 } else {
 State._current = State.LOADED;
 }
 }

 function showIntro () {
 var phrase = "Click or tap the screen to start the game";

 // Clear the canvas
 c.clearRect (0, 0, canvas.width, canvas.height);

 // Make a nice blue gradient
 var grd = c.createLinearGradient(0, canvas.height, canvas.width, 0);
 grd.addColorStop(0, '#ceefff');
 grd.addColorStop(1, '#52bcff');

 c.fillStyle = grd;
 c.fillRect(0, 0, canvas.width, canvas.height);

 var logoImg = new Image();
 logoImg.src = '../img/logo.png';

 // Store the original width value so that we can
 // keep the same width/height ratio later
 var originalWidth = logoImg.width;

 // Compute the new width and height values
 logoImg.width = Math.round((50 * document.body.clientWidth) / 100);
 logoImg.height = Math.round((logoImg.width * logoImg.height) /
originalWidth);

 // Create an small utility object
 var logo = {
 img: logoImg,
 x: (canvas.width/2) - (logoImg.width/2),
 y: (canvas.height/2) - (logoImg.height/2)
 }

 // Present the image
 c.drawImage(logo.img, logo.x, logo.y, logo.img.width, logo.img.height);

90 | Chapter 4: HTML5 Sound and Processing Optimization

 // Change the color to black
 c.fillStyle = '#000000';
 c.font = 'bold 16px Arial, sans-serif';

 var textSize = c.measureText (phrase);
 var xCoord = (canvas.width / 2) - (textSize.width / 2);

 c.fillText (phrase, xCoord, (logo.y + logo.img.height) + 50);
 }
 }
 </script>
 <style type="text/css" media="screen">
 html { height: 100%; overflow: hidden }
 body {
 margin: 0px;
 padding: 0px;
 height: 100%;
 }
 </style>

 </head>
 <body>
 <canvas id="myCanvas" width="100" height="100">
 Your browser doesn't include support for the canvas tag.
 </canvas>
 </body>
</html>

We’re also going to modify ex14-gui.html to add a background music to our game. The
example can be found online as ex14-gui-sound.html.

Managing Computationally Expensive Work with the Web
Workers API
Now that we have managed to develop a high-performance graphics rendering function
for our final game, it would be nice to implement a path-finding function, which will
be useful to build roads or to display characters going from point A to point B.

In a nutshell, path-finding algorithms discover the shortest route between two points
in an n-dimensional space, usually 2D or 3D.

Usually, path finding is one of the few areas that only a few selected people can get
right—and that many people (hopefully not including us) will get wrong. It is one of
the most expensive processes to execute, and the most efficient solution usually requires
us to modify the algorithm to customize it to our product.

One of the best algorithms to handle path finding is A*, which is a variation of Dijkstra’s
algorithm. The problem with any path-finding algorithm—or, for that matter, any
computationally expensive operation that needs more than a couple of milliseconds to

Managing Computationally Expensive Work with the Web Workers API | 91

get solved—is that in JavaScript, they produce an effect called “interface locking” in
which the browser freezes until the operation has finished.

Fortunately, the HTML5 specification also provides a new API called Web Workers.
Web Workers (usually just called “workers”) allow us to execute relatively computa-
tional expensive and long-lived scripts in the background without affecting the main
user interface of the browser.

Workers are not silver bullets that will magically help us to solve tasks
that are eating 100% of our CPU processing capabilities. If a task is
processor-intensive using the conventional approach, it will probably
also be processor-intensive when using workers and will wind up af-
fecting the user experience anyway. However, if a task is consuming
30% of the CPU, workers can help us minimize the impact on the user
interface by executing the task in parallel.

Also, there are some limitations:

• Because each worker runs in a totally separate, thread-safe context from the page
that executed it (also known as a sandbox), they won’t have access to the DOM
and window objects.

• Although you can spawn new workers from within a worker (this feature is not
available in Google Chrome), be careful, because this approach can lead to bugs
that are very difficult to debug.

Workers can be created with this code:

var worker = new Worker(PATH_TO_A_JS_SCRIPT);

where PATH_TO_A_JS_SCRIPT could be, for example, astar.js. Once our worker has
been created, we can terminate the execution at any given time by calling
worker.close(). If a worker has been closed and we need to perform a new operation,
we’ll need to create a new worker object.

Back and forth communication with Web Workers is accomplished by using the
worker.postMessage(object) method to send a message and defining a callback func-
tion on the worker.onmessage event. Additionally, you can define an onerror handler to
process errors on the worker.

Just like a conventional page, Web Workers also allow us to call external scripts by
using the function importScripts(). This function accepts zero or multiple parameters
(each parameter is a JavaScript file).

An example implementation of the A* algorithm in JavaScript called using Web Work-
ers can be found in the code repository as ex17-grid-astar.html. Figure 4-2 shows that
worker’s progress. The code is shown in Example 17 and an A* implementation de-
veloped in JavaScript.

92 | Chapter 4: HTML5 Sound and Processing Optimization

Figure 4-2. Example 4-4 in action

Example 4-4. Path-finding HTML

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <title>Example 17 - (A* working on a grid with unset indexes using
 web workers)</title>

 <script>

 window.onload = function () {
 var tileMap = [];

 var path = {
 start: null,
 stop: null
 }

 var tile = {
 width: 6,
 height: 6
 }

 var grid = {
 width: 100,
 height: 100
 }

 var canvas = document.getElementById('myCanvas');
 canvas.addEventListener('click', handleClick, false);

Managing Computationally Expensive Work with the Web Workers API | 93

 var c = canvas.getContext('2d');

 // Generate 1000 random elements
 for (var i = 0; i < 1000; i++) {
 generateRandomElement();
 }

 // Draw the entire grid
 draw();

 function handleClick(e) {
 // When a click is detected, translate the mouse
 // coordinates to pixel coordinates
 var row = Math.floor((e.clientX - 10) / tile.width);
 var column = Math.floor((e.clientY - 10) / tile.height);

 if (tileMap[row] == null) {
 tileMap[row] = [];
 }

 if (tileMap[row][column] !== 0 && tileMap[row][column] !== 1) {
 tileMap[row][column] = 0;

 if (path.start === null) {
 path.start = {x: row, y: column};
 } else {
 path.stop = {x: row, y: column};

 callWorker(path, processWorkerResults);

 path.start = null;
 path.stop = null;
 }

 draw();
 }
 }

 function callWorker(path, callback) {
 var w = new Worker('astar.js');
 w.postMessage({
 tileMap: tileMap,
 grid: {
 width: grid.width,
 height: grid.height
 },
 start: path.start,
 stop: path.stop
 });
 w.onmessage = callback;
 }

 function processWorkerResults(e) {
 if (e.data.length > 0) {

94 | Chapter 4: HTML5 Sound and Processing Optimization

 for (var i = 0, len = e.data.length; i < len; i++) {
 if (tileMap[e.data[i].x] === undefined) {
 tileMap[e.data[i].x] = [];
 }

 tileMap[e.data[i].x][e.data[i].y] = 0;
 }
 }

 draw();
 }

 function generateRandomElement() {
 var rndRow = Math.floor(Math.random() * (grid.width + 1));
 var rndCol = Math.floor(Math.random() * (grid.height + 1));

 if (tileMap[rndRow] == null) {
 tileMap[rndRow] = [];
 }
 tileMap[rndRow][rndCol] = 1;
 }

 function draw(srcX, srcY, destX, destY) {
 srcX = (srcX === undefined) ? 0 : srcX;
 srcY = (srcY === undefined) ? 0 : srcY;
 destX = (destX === undefined) ? canvas.width : destX;
 destY = (destY === undefined) ? canvas.height : destY;

 c.fillStyle = '#FFFFFF';
 c.fillRect (srcX, srcY, destX + 1, destY + 1);
 c.fillStyle = '#000000';

 var startRow = 0;
 var startCol = 0;
 var rowCount = startRow + Math.floor(canvas.width / tile.width) + 1;
 var colCount = startCol + Math.floor(canvas.height / tile.height) + 1;

 rowCount = ((startRow + rowCount) > grid.width) ? grid.width : rowCount;
 colCount = ((startCol + colCount) > grid.height) ? grid.height : colCount;

 for (var row = startRow; row < rowCount; row++) {
 for (var col = startCol; col < colCount; col++) {
 var tilePositionX = tile.width * row;
 var tilePositionY = tile.height * col;

 if (tilePositionX >= srcX && tilePositionY >= srcY &&
 tilePositionX <= (srcX + destX) &&
 tilePositionY <= (srcY + destY)) {

 if (tileMap[row] != null && tileMap[row][col] != null) {
 if (tileMap[row][col] == 0) {
 c.fillStyle = '#CC0000';
 } else {
 c.fillStyle = '#0000FF';

Managing Computationally Expensive Work with the Web Workers API | 95

 }

 c.fillRect(tilePositionX, tilePositionY, tile.width, tile.height);
 } else {
 c.strokeStyle = '#CCCCCC';
 c.strokeRect(tilePositionX, tilePositionY, tile.width, tile.height);
 }
 }
 }
 }
 }
 }
 </script>
 </head>
 <body>
 <canvas id="myCanvas" width="600" height="300"></canvas>

 </body>
</html>

Example 4-5. JavaScript A* class

// The worker will take care of the instantiation of the astar class
onmessage = function(e){
 var a = new aStar(e.data.tileMap, e.data.grid.width, e.data.grid.height, e.data.start,
e.data.stop);
 postMessage(a);
}

// A* path-finding class adjusted for a tileMap with noncontiguous indexes

/**
 * @param tileMap: A 2-dimensional matrix with noncontiguous indexes
 * @param gridW: Grid width measured in rows
 * @param gridH: Grid height measured in columns
 * @param src: Source point, an object containing X and Y
 * coordinates representing row/column
 * @param dest: Destination point, an object containing
 * X and Y coordinates representing row/column
 * @param createPositions: [OPTIONAL] A boolean indicating whether
 * traversing through the tileMap should
 * create new indexes (default TRUE)
 */
var aStar = function(tileMap, gridW, gridH, src, dest, createPositions) {
 this.openList = new NodeList(true, 'F');
 this.closedList = new NodeList();
 this.path = new NodeList();
 this.src = src;
 this.dest = dest;
 this.createPositions = (createPositions === undefined) ? true : createPositions;
 this.currentNode = null;

 var grid = {
 rows: gridW,

96 | Chapter 4: HTML5 Sound and Processing Optimization

 cols: gridH
 }

 this.openList.add(new Node(null, this.src));

 while (!this.openList.isEmpty()) {
 this.currentNode = this.openList.get(0);
 this.currentNode.visited = true;

 if (this.checkDifference(this.currentNode, this.dest)) {
 // Destination reached :)
 break;
 }

 this.closedList.add(this.currentNode);
 this.openList.remove(0);

 // Check the 8 neighbors around this node
 var nstart = {
 x: (((this.currentNode.x - 1) >= 0) ? this.currentNode.x - 1 : 0),
 y: (((this.currentNode.y - 1) >= 0) ? this.currentNode.y - 1 : 0),
 }

 var nstop = {
 x: (((this.currentNode.x + 1) <= grid.rows) ? this.currentNode.x + 1 : grid.rows),
 y: (((this.currentNode.y + 1) <= grid.cols) ? this.currentNode.y + 1 : grid.cols),
 }

 for (var row = nstart.x; row <= nstop.x; row++) {
 for (var col = nstart.y; col <= nstop.y; col++) {

 // The row is not available on the original tileMap, should we keep going?
 if (tileMap[row] === undefined) {
 if (!this.createPositions) {
 continue;
 }
 }

 // Check for buildings or other obstructions
 if (tileMap[row] !== undefined && tileMap[row][col] === 1) {
 continue;
 }

 var element = this.closedList.getByXY(row, col);
 if (element !== null) {
 // this element is already on the closed list
 continue;
 } else {
 element = this.openList.getByXY(row, col);
 if (element !== null) {
 // this element is already on the closed list
 continue;
 }
 }

Managing Computationally Expensive Work with the Web Workers API | 97

 // Not present in any of the lists, keep going.
 var n = new Node(this.currentNode, {x: row, y: col});
 n.G = this.currentNode.G + 1;
 n.H = this.getDistance(this.currentNode, n);
 n.F = n.G + n.H;

 this.openList.add(n);
 }
 }
 }

 while (this.currentNode.parentNode !== null) {
 this.path.add(this.currentNode);
 this.currentNode = this.currentNode.parentNode;
 }

 return this.path.list;
}

aStar.prototype.checkDifference = function(src, dest) {
 return (src.x === dest.x && src.y === dest.y);
}

aStar.prototype.getDistance = function(src, dest) {
 return Math.abs(src.x - dest.x) + Math.abs(src.y - dest.y);
}

function Node(parentNode, src) {
 this.parentNode = parentNode;
 this.x = src.x;
 this.y = src.y;
 this.F = 0;
 this.G = 0;
 this.H = 0;
}

var NodeList = function(sorted, sortParam) {
 this.sort = (sorted === undefined) ? false : sorted;
 this.sortParam = (sortParam === undefined) ? 'F' : sortParam;
 this.list = [];
 this.coordMatrix = [];
}

NodeList.prototype.add = function(element) {
 this.list.push(element);

 if (this.coordMatrix[element.x] === undefined) {
 this.coordMatrix[element.x] = [];
 }

 this.coordMatrix[element.x][element.y] = element;

 if (this.sort) {
 var sortBy = this.sortParam;
 this.list.sort(function(o1, o2) { return o1[sortBy] - o2[sortBy]; });

98 | Chapter 4: HTML5 Sound and Processing Optimization

 }
}

NodeList.prototype.remove = function(pos) {
 this.list.splice(pos, 1);
}

NodeList.prototype.get = function(pos) {
 return this.list[pos];
}

NodeList.prototype.size = function() {
 return this.list.length;
}

NodeList.prototype.isEmpty = function() {
 return (this.list.length == 0);
}

NodeList.prototype.getByXY = function(x, y) {
 if (this.coordMatrix[x] === undefined) {
 return null;
 } else {
 var obj = this.coordMatrix[x][y];

 if (obj == undefined) {
 return null;
 } else {
 return obj;
 }
 }
}
NodeList.prototype.print = function() {
 for (var i = 0, len = this.list.length; i < len; i++) {
 console.log(this.list[i].x + ' ' + this.list[i].y);
 }
}

Local Storage and Session Storage
One limitation that web developers had to deal with in the past was that the size of
cookies wasn’t enough to save anything too big or important; it was limited to just 4K.
Nowadays, modern web browsers are including support for Web Storage, a tool that
can help us save at least 5 megabytes (MB) on the user’s local HDD (hard disk drive).
However, when we say “at least 5 MB,” it can actually be more or less than that amount,
depending on which browser we’re using, and—in some cases (as in Opera)—the space
quota that we defined in our settings panel. In some cases, the Web Storage capabilities
could be disabled entirely. If we exceed the 5 MB of storage, the browser will throw
a QUOTA_EXCEEDED_ERR exception, so it’s very important to surround calls to local
Storage or sessionStorage in a try-catch block and—just like we should be doing with
the rest of our code—handle any exceptions appropriately.

Local Storage and Session Storage | 99

Expect Web Storage to behave very similarly to cookies:

• The functionality could be disabled.

• We have a maximum amount of elements that we can store—4K in the case of
cookies and 5MB in the case of Web Storage, but it could be less than that as well.

• Users can delete or manually create and/or modify the contents of our storage
folder at any given time.

• Browsers can also decide to automatically “expire” the content of our storage
folder.

• The quota is given per domain name, and shared by all the subdomains (i.e.,
site1.example.com, site2.example.com, and site3.example.com share the same
folder).

However, Web Storage differs from cookies in the following ways:

• The data saved with the Web Storage API can only be queries made by the client,
not by the server.

• The contents do not travel “back and forth” on every request.

• With the exception of sessionStorage (which deletes its contents once the session
is over), we can’t explicitly specify an expiration date.

• Just as with cookies, it’s best to not use Web Storage to save anything important.

Other than that, it’s a great tool that can help us do things that we couldn’t do before,
like caching objects to increase loading performance the next time the user opens our
application, saving a draft of the document we’re working on, or even using it as a
virtual memory container.

Once you understand the limitations and capabilities of Web Storage, the rest is pretty
straightforward:

• Data is stored in an array of key-value pairs that are treated and stored like strings.

• The difference between localStorage and sessionStorage is that localStorage
stores the data permanently (or until the user or the browser decides to dispose of
it), and sessionStorage stores it only for the duration of the “session” (until we
close the tab/window).

The Web Storage API consists of only four methods:

localStorage.setItem(key, value)
Adds an item

localStorage.getItem(key)
Queries an existing item

localStorage.removeItem(key)
Removes a specific item

100 | Chapter 4: HTML5 Sound and Processing Optimization

localStorage.clear()
Entirely deletes the contents of our localStorage folder

Example 4-6 shows how to use Web Storage.

Example 4-6. Using Web Storage

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <title>Canvas Example 18 (LocalStorage)</title>

 <script>
 window.onload = function () {
 var binMatrix = null;
 var matrixSize = 25;

 // This is the key name under which we will be storing,
 // loading or removing the data
 var KEY_NAME = "matrix";

 var matrix = document.getElementById('matrix');
 var load = document.getElementById('load');
 var save = document.getElementById('save');
 var clear = document.getElementById('clear');

 binMatrix = initializeMatrix(matrixSize);
 printMatrix(binMatrix, matrix);

 // Handle click events on the buttons
 load.addEventListener('click', handleLoad, false);
 save.addEventListener('click', handleSave, false);
 clear.addEventListener('click', handleClear, false);

 function handleLoad() {
 var m = localStorage.getItem(KEY_NAME);

 try {
 // If we haven't set the key yet, or we removed its
 // contents with the "m" variable,
 // will be null.
 if (m == null) {
 alert("You haven't stored a matrix yet.");
 } else {
 // Otherwise, we need to "parse" the contents back to an array.
 binMatrix = JSON.parse(m);

 // Clear the original matrix
 matrix.innerHTML = null;

 // And reprint it
 printMatrix(binMatrix, matrix);
 }

Local Storage and Session Storage | 101

 } catch(e) {
 alert("The following error occurred while trying to load the matrix: " + e);
 }
 }

 function handleSave() {
 try {
 // Read the values of the checkbox inside the "matrix" div
 // and replace them accordingly in the array
 for (var i = 0; i < matrixSize; i++) {
 for (var j = 0; j < matrixSize; j++) {
 var pos = (i + j) + (i * matrixSize);

 if (matrix.childNodes[pos].tagName == "INPUT") {
 binMatrix[i][j] = (matrix.childNodes[pos].checked) ? 1 : 0;
 }
 }
 }
 // Finally, stringify the matrix for storage and save it
 localStorage.setItem(KEY_NAME, JSON.stringify(binMatrix));
 } catch(e) {
 alert("The following error occurred while trying to save the matrix: " + e);
 }
 }

 function handleClear() {
 if (confirm("Are you sure that you want to empty the matrix?")) {
 try {
 localStorage.removeItem(KEY_NAME);

 // Clear the original matrix
 matrix.innerHTML = null;
 binMatrix = null;

 // Regenerate the matrix
 binMatrix = initializeMatrix(matrixSize);

 // And reprint it
 printMatrix(binMatrix, matrix);
 } catch(e) {
 alert("The following error occurred while trying to remove the matrix: " + e);
 }
 }
 }
 }

 /**
 * Generic matrix initialization routine
 */
 function initializeMatrix(size) {
 var m = [];

 for (var i = 0; i < size; i++) {
 m[i] = [];

102 | Chapter 4: HTML5 Sound and Processing Optimization

 for (var j = 0; j < size; j++) {
 m[i][j] = 0;
 }
 }

 return m;
 }

 /**
 * The following function gets the matrix and converts it to a long string
 * of checkboxes, to then insert it inside the "matrix" <div>
 * It is considered a good practice, unless you really need to
 * do otherwise, to use strings to generate HTML elements
 * in order to avoid having to create a new object for every new
 * element that you want to add.
 * Concatenate all the strings together and insert them to the
 * object "all at once" in order to prevent
 * unnecessary and performance-heavy browser reflows.
 */
 function printMatrix(m, elem) {
 var str = "";

 for (var i = 0, x = m.length; i < x; i++) {
 for (var j = 0, r = m[i].length; j < r; j++) {
 str += '<input type="checkbox" class="' + i + ' - ' + j + '" ';
 str += (m[i][j] == 1) ? 'checked' : '';
 str += ' />';
 str += ((j + 1) == r) ? '<div class="clb"></div>' : '';
 }
 }

 elem.innerHTML = str;
 }
 </script>

 <style type="text/css" media="screen">
 body {
 margin: 20px;
 padding: 0px;
 }

 #matrix input {
 float: left;
 padding: 0px;
 margin: 0px;
 }
 div.clb { clear: both; }
 </style>
 </head>
 <body>
 <input type="button" id="load" value="Load Matrix" />
 <input type="button" id="save" value="Save Matrix" />
 <input type="button" id="clear" value="Clear Matrix" />

Local Storage and Session Storage | 103

 <div id="matrix"></div>
 </body>
</html>

The complete code for Example 4-6 is stored as ex18-localStorage.html in the exam-
ples folder of the code repository.

For more information, refer to the Web Storage section of the HTML5
specification (still a draft at the time of writing of this book): http://dev
.w3.org/html5/webstorage/.

We’re not going to be using localStorage in our game. However, if you’re working
with very large grids full of elements, it’s recommended to work only with “portions”
of the matrix containing all of our objects. By slightly modifying the code presented
here, you can download additional tile positions from a server as you scroll around the
grid and leave them ready to be swapped with the current matrix by storing the result
on localStorage.

104 | Chapter 4: HTML5 Sound and Processing Optimization

http://dev.w3.org/html5/webstorage/
http://dev.w3.org/html5/webstorage/

CHAPTER 5

Connecting the Game to People

You’ve built an attractive game with interactive graphics and music. Now you just need
to set things up to bring people in! That means putting logic on the server, keeping
people from tinkering with your logic to break things (in their favor), and connecting
your application to a place with a lot of people—Facebook!

Cheat Prevention and Server-Side Operations
One of the main issues when developing an online video game is cheat prevention. Just
like in conventional web development, we can’t trust any user, so securing our appli-
cation against malicious users and handling unexpected inputs or return values should
always be our highest priority.

The risk is even greater in open source games, particularly those built with web tech-
nologies such as JavaScript and HTML, in which one can tamper with variables (or
even POST/GET requests) easily or even modify code on the client in real time on the
fly.

Unfortunately, the solution to this problem varies from game to game, but it almost
always relies on two important (and usually very inefficient) approaches that need to
be solved in the predevelopment and development stages of game creation:

• Try to minimize the risk of committing fraud on the client by design

• Validate everything on the server

In the case of our game, and in most real-time social strategy games, these are some of
the things we need to keep in mind:

• Every user should have her own account balance stored in a database field or table
(depending on whether you want to keep track of individual transactions) and
every purchase or sell operation should update the balance.

• We need to keep a Unix time value on the server and sync the value with the client
regularly

105

• Perhaps the most important thing to keep in mind (and the most reliable anti-
cheating method) is that we need to design the game in such a way as to reliably
predict the user score at any given time on the server without ever interacting with
the client.

How do we do that? Let’s consider the following scenario:

Initially, the user has a balance of 2000 gold coins, 0 buildings, an account “creation
time” of 1293861600 (which is the Unix timestamp for January 1, 2011, at 00:00:00)
and a “last update” time of 1293861600 (same timestamp as the start time).

We have three possible structures that we can build:

• An ice cream shop that costs 250 gold coins and pays 5 gold coins every 30 minutes

• A hotel that costs 1,000 gold coins and pays 30 gold coins per hour

• A cinema that costs 500 gold coins and pays 12 gold coins every 30 minutes

The user builds an ice cream shop at 1293861660 (January 1, 2011, at 00:01:00, one
minute after the account creation).

He then decides to build a hotel at 1294084800 (January 3, 2011, at 14:00:00).

At 1294120800 (January 4, 2011, at 00:00:00), the user builds a cinema.

At 1294639200 (January 10, 2011, at 00:00:00), he returns to the game and wants to
see his account balance.

One approach to handle this situation would be to keep track of all the buildings that
the user has purchased and to add a “last update” field in the user’s account that knows
the last time that he queried his account balance or purchased/sold a building. Then,
every time that he wants to see his account balance or does a buy/sell operation, we
would perform the following steps:

1. Update the “last update” field of the user with the current timestamp.

2. Start cycling through all the buildings that the user owns.

3. Calculate the time difference (in seconds) between the current time and the “last
update” time of the user field.

4. Divide the result by the number of seconds of the payment fractions, and “floor”
the result.

5. Multiply the result by the number of gold coins given on each fraction.

6. Update the account balance by adding up the result.

7. Depending on the operation that we are performing (show, build, or sell), either
show the account balance or subtract/add the cost of the building.

8. If we are selling a building, delete the association.

106 | Chapter 5: Connecting the Game to People

If we apply this method to the example scenario described, we can deduce the following:

• On 1293861660, the user decided to build an ice cream shop. At the time, he had
0 other buildings, so we just need to update his account balance and his “last
update” time and create an association. The “last update” time of this association
will be 1293861660.

The user’s account balance will now be 1750 (2000 – 250).

• On 1294084800, he decided to build a hotel. Before we create a new association
for the hotel, we need to recalculate his account balance. We know that he pur-
chased the ice cream shop on 1293861660, so we update the “last update” field of
the user to 1294084800; in order to know how much income the ice cream shop
has created so far, we perform the following calculation:

timeDiff = 1294084800 − 1293861660 = 223140 seconds

Ice cream shops generate a profit of 5 gold coins every 30 minutes (1800 seconds),
so we need to do this calculation:

result = timeDiff / 1800 seconds = 123.97

or just 123 once we floor the result:

result = result * 5 = 615 gold coins

We finally update the account balance to 1750 + 615 = 2365, create the association
for the hotel (using 1294084800 as the “last update” time), and take away the cost
of the hotel. The user’s account balance will now be 1365 (2365 – 1000).

• On 1294120800, he purchased a cinema, so we perform the same steps as before
(this time for two buildings, the ice cream shop and the hotel):

timeDiff = 1294120800 – 1294084800 = 36000 seconds

iceCreamShopResult = timeDiff / 1800 = 20

iceCreamShopResult = iceCreamShopResult * 5 gold coins = 100 gold coins

hotelResult = timeDiff / 3600 seconds (one hour) = 10

hotelResult = hotelResult * 30 gold coins = 300 gold coins

accBalance = accBalance + hotelResult + iceCreamShopResult = 1765

accBalance = accBalance - 500 gold coins (the cost of the parking lot)

The user’s account balance at this point will be 1265.

• Finally, on 1294639200, he wants to check his account balance once again:

timeDiff = 1294639200 - 1294120800 = 518400 seconds

iceCreamShopResult = timeDiff / 1800 = 288

iceCreamShopResult = iceCreamShopResult * 5 = 1440 gold coins

Cheat Prevention and Server-Side Operations | 107

hotelResult = timeDiff / 3600 seconds (one hour) = 144

hotelResult = hotelResult * 30 = 4320 gold coins

cinemaResult = timeDiff / 1800 = 288

cinemaResult = cinemaResult * 12 = 3456 gold coins

accBalance = accBalance + cinemaResult + hotelResult + iceCreamShopResult

This means that, by January 10, 2011, at 00:00:00, we can confidently predict that
the user’s account balance will be 10481.

Although it will be extremely difficult, if not impossible, to prevent the user from mod-
ifying the client side of our game, using the method explained here, we can certainly
prevent malicious users from gaining an unfair advantage to other players, as the mod-
ifications that they make affect them only locally, not on the server. Another useful
feature that could be added to this idea is a concept used by Zynga in some of their
games, which is that instead of generating profit constantly—as in this case—the user
must “collect” the profit generated by the building. For example, if a building generates
500 coins every 30 minutes and the user didn’t play for 3 days, when he collects the
money, he’ll be awarded just 500 coins. All that we need to do to implement this ap-
proach is to check whether the result of the time difference is greater than the profit
generated by the building; if so, a flag should be set to true. Then the user will need to
manually “collect” the money, resetting the flag to false.

We can implement the original method explained previously using the data model
shown in Figure 5-1.

Figure 5-1. Data model connecting users and buildings

The data model presented in Figure 5-1 tells us that:

Any user can be associated to zero or many building instances.
Any individual instance must have one user.
Any building may also be associated to zero or many building instances.
Any building instances must be associated to one building.

108 | Chapter 5: Connecting the Game to People

For our game, we’re going to implement this data model and the software that controls
its behavior using MySQL and PHP:

• You can install and configure MySQL on your system; see http://dev.mysql.com/
usingmysql/get_started.html.

• You can install and configure PHP on your system; see http://us.php.net/manual/
en/install.php. In order to run PHP, you will also need to install a web server such
as Apache, Lighttpd, or nginx. The instructions on how to install (and configure)
each one can also be found at the above .php URL.

Once you have configured PHP and MySQL on your computer (including setting up a
root password), you can connect to the server by opening a new terminal and executing
the command:

mysql -hlocalhost -uroot -p<YOURPASSWORD>

If you haven’t configured a password for the root user, try:

mysql -hlocalhost -uroot

Once you are connected, you should get access to the mysql prompt:

scarlet:~ andres$ mysql -uroot -hlocalhost
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 816
Server version: 5.1.45 MySQL Community Server (GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql>

The MySQL Server version may differ on your system.

Now that we are connected to our database, let’s create the database for our game by
using the following command:

CREATE DATABASE mygame;

If everything went well, you should see the following output:

mysql> CREATE DATABASE mygame;
Query OK, 1 row affected (0.00 sec)

In order to create tables inside the mygame database, we first need to tell MySQL to
select it as the active database:

USE mygame;

If no other errors occurred, you should see the following return value:

Cheat Prevention and Server-Side Operations | 109

http://dev.mysql.com/usingmysql/get_started.html
http://dev.mysql.com/usingmysql/get_started.html
http://us.php.net/manual/en/install.php
http://us.php.net/manual/en/install.php

mysql> USE mygame;
Database changed

In the code repository folder called server at https://github.com/andrespagella/Making
-Isometric-Real-time-Games/tree/master/server you will find two .sql files: model-
empty.sql and model-filled.sql. Download model-filled.sql to your computer, and go
back to the MySQL prompt. Using the download path of the file, execute the following
statement:

source <PATH_TO_SQL_FILE>;

If everything went well, you should see the following output:

mysql> source /Users/andres/Desktop/model-filled.sql
Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 4 rows affected (0.05 sec)

Query OK, 0 rows affected (0.05 sec)

Query OK, 0 rows affected (0.07 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.10 sec)

Query OK, 0 rows affected (0.09 sec)

mysql>

The SQL file will generate three database tables: users, buildings, and building_
instances and will prefill the buildings table with four buildings (which we’ll be using
in the final game): an ice cream shop, a hotel, a cinema, and a tree.

In order to use the mygame database with our PHP scripts, we also need to generate a
MySQL user, giving the user access to execute the SELECT, INSERT, UPDATE, and DELETE
operations. We can do that by executing the following statements in the MySQL
prompt:

CREATE USER 'mygameuser'@'localhost' IDENTIFIED BY 'game123';
GRANT SELECT, INSERT, UPDATE, DELETE ON mygame.* TO 'mygameuser'@'localhost';

As always, the output shouldn’t display any errors:

mysql> CREATE USER 'mygameuser'@'localhost' IDENTIFIED BY 'game123';
Query OK, 0 rows affected (0.09 sec)

mysql> GRANT SELECT, INSERT, UPDATE, DELETE ON mygame.* TO 'mygameuser'@'localhost';
Query OK, 0 rows affected (0.07 sec)

mysql>

110 | Chapter 5: Connecting the Game to People

https://github.com/andrespagella/Making-Isometric-Real-time-Games/tree/master/server
https://github.com/andrespagella/Making-Isometric-Real-time-Games/tree/master/server

For more information on how to use MySQL, please refer to the official
MySQL Developer portal at http://dev.mysql.com.

Inside the server folder of the GitHub repository, you will also find the following files
and folders:

config.php
That defines the database connection details as well as the size of the grid.

classes/class.dbutil.php
A simple MySQL database utility class

classes/class.users.php
Handles user-related operations

classes/class.buildings.php
Handles building-related operations

classes/class.operations.php
Takes care of the instantiation and retrieval of building instances

classes/class.user.php
A user class

classes/class.building.php
A building class

classes/class.buildingInstance.php
A buildingInstance class

test-database.php
A useful script that tries to connect to the database and tests whether it can store,
retrieve, and remove entries

registration.php
A script that shows you how to register a new user using the classes mentioned
previously

authentication.php
A script that shows you how to authenticate and initiate a user session using the
classes listed previously

The Path to the Final Game
In the previous section, you learned how to implement the server scripts and database
structure for our game. Now we’re going to combine the game that we’ve developed
so far and integrate it into our server-side scripts to handle registration, authentication,
and populating values such as the ones in the “build” panel or the account balance with
the real values stored in the database.

The Path to the Final Game | 111

http://dev.mysql.com

Our file and folder structure for the final game will look like this:

index.php
Contains the index page; handles authentication and user registration.

game.php
Contains the actual game. If the session is not active, the user will be bounced back
to the index to authenticate or register. The code inside this file will be very similar
to Example 3-1, but modified to display real values inside the containers and bro-
ken down into several JavaScript files for easier maintenance.

async/
Contains the PHP scripts to handle asynchronous calls made with JavaScript using
XMLHttpRequest (AJAX).

css/
Contains the CSS files site.css (used in index.php) and ui-style.css (used in our
game).

js/
Contains all the JavaScript files used by our game.

Besides assigning “real” values to all the fields, game.php will perform an additional
step to get all the Building Instances associated to the current user and will automati-
cally populate the tileMap matrix with the buildings that the user has purchased. Ad-
ditionally, for decorative purposes, the registration bit on index.php will also randomly
create Building Instances of the “Tree” building (10% of the total size of the grid will
be filled with trees).

The instantiation of those building instances in our grid is going to be performed by a
function called initializeGrid() that combines the PHP array containing the building
instances with the JavaScript tileMap matrix of our game. Unless the user manages to
fill the entire grid with objects (which means that he’d need to buy 62,500 buildings,
which is highly unlikely), this approach is enough for our needs. Another solution
would have been to create an identical tileMap matrix in PHP, encode it to JSON, and
then replace the original tileMap matrix (in the JavaScript) with the decoded JSON,
but on my tests I found this approach to be too inefficient because decoding large JSON
objects in JavaScript has a lot of overhead.

If you want to use a bigger grid for your own personal or professional
project, you might want to break down the initialization routine to load
only a section of the entire grid and load the rest dynamically as you
scroll. The reason why we’re not implementing this approach in this
case is because mobile devices have a (somewhat) good download band-
width, but a terrible roundtrip/connection latency (especially when they
are connected via 3G), meaning that it’s generally best to download
everything in a single batch rather than doing several “small” requests
for additional data.

112 | Chapter 5: Connecting the Game to People

We’re also going to modify our Game class a bit to prevent it from displaying the grid as
soon as it is instantiated. The modification consists in removing the final two lines of
the Game() constructor:

this.doResize()
this.draw()

Another thing that we’re going to integrate at this point is a modification of our title
screen example, to be shown as soon as the user loads the game.php page. Adding the
title screen also means that we’ll need to add an object that keeps track of the current
game state (LOADING, LOADED, PLAYING), which is why we’re also going to create a Game
State object (available globally) that looks like this:

var GameState = {
 _current: null,
 LOADING: 0,
 LOADED: 1,
 TITLESCREEN: 2,
 PLAYING: 3
}

Then, depending on the current game state set in GameState._current, some objects
and events are going to behave differently. For example, clicking on the title screen
when the GameState._current is set to GameState.LOADING shouldn’t trigger any events.
However, if the GameState._current is set to GameState.TITLESCREEN, clicking on the
window should display our game.

Initially, the title screen will serve as a bumper to preload our game resources such as
images or sounds in the background. To do this, we’re going to use an object called
ResourceLoader that will allow us to download and preload all the files before we use
them.

The ResourceLoader class is defined in a very straightforward way in resourceLoader.js:

// ResourceLoader class

var ResourceType = {
 IMAGE: 0,
 SOUND: 1
}

function ResourceLoader(onPartial, onComplete) {
 this.resources = [];
 this.resourcesLoaded = 0;

 if (onPartial !== undefined && typeof(onPartial) === "function") {
 this.onPartial = onPartial;
 }

 if (onComplete !== undefined && typeof(onComplete) === "function") {
 this.onComplete = onComplete;
 }
}

The Path to the Final Game | 113

ResourceLoader.prototype.addResource = function(filePath, fileType, resourceType) {
 var res = {
 filePath: filePath,
 fileType: fileType,
 resourceType: resourceType
 };

 this.resources.push(res);
}

ResourceLoader.prototype.startPreloading = function() {
 for (var i = 0, len = this.resources.length; i < len; i++) {
 switch(this.resources[i].resourceType) {
 case ResourceType.IMAGE:
 var img = new Image();
 var rl = this;

 img.src = this.resources[i].filePath;
 img.addEventListener('load', function() { rl.onResourceLoaded(); }, false);
 break;
 case ResourceType.SOUND:
 var a = new Audio();

 // Only preload sound files that we can play.
 if (a.canPlayType(this.resources[i].fileType) === "maybe" ||
 a.canPlayType(this.resources[i].fileType) === "probably") {

 a.src = this.resources[i].filePath;
 a.type = this.resources[i].fileType;

 var rl = this;
 a.addEventListener('canplaythrough', function() {
 a.removeEventListener('canplaythrough', arguments.callee, false);
 rl.onResourceLoaded();
 }, false);
 } else {
 // Can't play the sound. Assume that the resource is loaded.
 this.onResourceLoaded();
 }

 break;
 }
 }
}

ResourceLoader.prototype.onResourceLoaded = function() {
 this.resourcesLoaded++;

 if (this.onPartial != undefined) {
 this.onPartial();
 }

 if (this.resourcesLoaded == this.resources.length) {
 if (this.onComplete != undefined) {
 this.onComplete();

114 | Chapter 5: Connecting the Game to People

 }
 }

 return;
}

ResourceLoader.prototype.isLoadComplete = function() {
 if (this.resources.length == this.resourcesLoaded) {
 return true;
 }

 return false;
}

We can use the ResourceLoader class in the following way:

var rl = new ResourceLoader();

rl.addResource('image1.png', null, ResourceType.IMAGE);
rl.addResource('image2.jpg', null, ResourceType.IMAGE);
rl.addResource('image3.gif', null, ResourceType.IMAGE);
rl.addResource('sound.ogg', 'audio/ogg', ResourceType.SOUND);
rl.addResource('sound.mp3', 'audio/mp3', ResourceType.SOUND);

rl.startPreloading();

As soon as the ResourceLoader method startPreloading() is called, we will be getting
access to two very useful properties:

ResourceLoaderInstance.resources.length
Returns the amount of resources added

ResourceLoaderInstance.resourcesLoaded
Keeps track of how many of the resources have been preloaded so far

By combining both variables, we can calculate at any given time the percentage of
resources that have been preloaded in the following way:

var percentLoaded = Math.floor((ResourceLoaderInstance.resourcesLoaded * 100) /
ResourceLoadedInstance.resources.length);

Additionally, the ResourceLoader class allows us to define two callbacks:

onPartial
Called every time that an element gets loaded

onComplete
Called when all resources have been loaded

Using these callbacks, it is possible to show feedback on the current status of the loading
process, as shown in Figure 5-2.

The Path to the Final Game | 115

Figure 5-2. Opening screen with progress bar at bottom

The game will manage different GameStates; depending on which one is the current one,
a different process will be executed. To manage the transition between game states,
we’re going to use a function called handleGameState() that gets executed when the
document finishes loading. The function uses the GameState object shown before and
looks like this:

function handleGameState(nextState) {
 if (nextState !== undefined) {
 GameState._current = nextState;
 }

 switch(GameState._current) {
 case GameState.LOADING:
 // ...
 break;
 case GameState.LOADED:
 // ...
 break;
 case GameState.TITLESCREEN:
 // ...
 break;
 case GameState.PLAYING:
 // ...

116 | Chapter 5: Connecting the Game to People

 break;
 default:
 // ...
 break;
 }
}

To change the current game state, we just specify a valid GameState value. For example,
we could easily add a GameState.PAUSED state that shows a paused screen when the user
presses the escape key, and when it is pressed once again calls handleGameState(Game
State.PLAYING) to get back to the game.

In the case of the GameState.LOADING, we’re going to call a function called preload
Resources(), which instantiates a copy of the ResourceLoader object to take care of
preloading all the assets that we need (such as images or sounds) to run our game. The
function looks like this:

function preloadResources(canvas, callback) {
 var c = canvas.getContext('2d');

 var rl = new ResourceLoader(printProgressBar, callback);

 rl.addResource('../img/tile.png', null, ResourceType.IMAGE);
 rl.addResource('../img/ui-icons.png', null, ResourceType.IMAGE);
 rl.addResource('../img/spritesheet.png', null, ResourceType.IMAGE);

 rl.addResource('../sounds/title.ogg', 'audio/ogg', ResourceType.SOUND);
 rl.addResource('../sounds/title.mp3', 'audio/mp3', ResourceType.SOUND);

 rl.startPreloading();

 printProgressBar();

 function printProgressBar() {
 var percent = Math.floor((rl.resourcesLoaded * 100) / rl.resources.length);

 var cwidth = Math.floor((percent * (canvas.width - 1)) / 100);

 c.fillStyle = '#000000';
 c.fillRect(0, canvas.height - 30, canvas.width, canvas.height);

 c.fillStyle = '#FFFFFF';
 c.fillRect(1, canvas.height - 28, cwidth, canvas.height - 6);
 }
}

This function will also print the pretty progress bar shown Figure 5-2.

You will also notice that we’re not loading cinema.png or tree.png; instead, we’re load-
ing a file called spritesheet.png. In order to bring down the number of requests (which
is a major thing to take care of in web performance optimization), instead of loading
each individual image separately, we have grouped them all in a single file that we will
later combine with the Sprite object shown in previous sections.

The Path to the Final Game | 117

The resource loader instance is also receiving a parameter called callback, which is
nothing more than handleGameState(GameState.LOADED) and will help us transition to
the next state when the resource loading is over.

GameState.LOADED will be in charge of creating a “Game” instance and will also populate
the tile map matrix with the building instances that we currently own. When it finishes
loading the matrix, it will automatically call handleGameState() again, passing along
GameState.TITLESCREEN as the next game state.

GameState.TITLESCREEN will show our game’s title screen (which, in our case, will be
the “Tourist Resort” logo and the phrase “click or tap the screen to start the game”).
At the same time, it will add a listener for a “click” that will get automatically removed
once the user clicks on the screen one time. When the user clicks/taps on any part of
the window, the game will perform a series of fade-ins/fade-outs to white, showing the
phrase “Developed by you.” Finally, when the animation is over, handleGameState()
will be called once again using GameState.PLAYING, which will show the game UI, print
the grid with all the buildings, and start listening for events.

When game.php—containing our game—is requested, the server will automatically
populate the Build panel to show the available buildings for construction, specifying
costs, profits generated, times, and so on. Figure 5-3 shows a screenshot.

Figure 5-3. The Build panel gives users choices

Now that we’re listening for input events such as scrolls, mouse up/down, key downs,
and the like, in order to manage which operation a click should trigger, we’re going to
use an object similar to GameState, which keeps track of the current selected tool:

118 | Chapter 5: Connecting the Game to People

var Tools = {
 current: 4, // Default tool
 MOVE: 0,
 ZOOM_IN: 1,
 ZOOM_OUT: 2,
 DEMOLISH: 3,
 SELECT: 4,
 BUILD: 5
}

Then, when we click on the grid, the following event will be triggered and will let us
handle the action appropriately:

Game.prototype.handleMouseDown = function(e) {
 e.preventDefault();

 switch (Tools.current) {
 case Tools.BUILD:
 // ...
 break;
 // Other tools, etc.
 }
}

Some actions, such as building or demolishing, also require the database fields to be
updated on the server. In order to handle communications with the server, we’re going
to use the following functions in comm.js:

var SERVER_PATH_URL = "http://localhost:8080/";

function request(url, callback) {
 var req = false;

 if (window.XMLHttpRequest) {
 try {
 req = new XMLHttpRequest();
 } catch(e) {
 // Do nothing.
 }
 }

 if (req) {
 req.open("GET", url, true);
 req.send(null);
 req.onreadystatechange = function() {
 switch(req.readyState) {
 case 2:
 if (req.status !== 200) {
 callback('ERROR');
 return;
 }
 break;
 case 4:
 callback (req.responseText);
 break;
 }

The Path to the Final Game | 119

 }
 } else {
 // Doesn't include support for XMLHttpRequest
 callback('ERROR');
 }
}

// Purchase
function purchase(buildingId, row, col, callback) {
 var url = SERVER_PATH_URL + 'purchase.php';

 url += "?buildingId=" + buildingId;
 url += "&x=" + row;
 url += "&y=" + col;

 request(url, callback);
}

// Demolish
function demolish(row, col) {
 var url = SERVER_PATH_URL + 'demolish.php';

 url += "?x=" + row;
 url += "&y=" + col;

 request(url, callback);
}

// Sync
function sync() {
 var url = SERVER_PATH_URL + 'sync.php';

 request(url, callback);
}

Using any of these functions is very easy. To purchase a tree (buildingId = 4) on row
4, column 5 we could use the following code:

purchase(4, 4, 5, function(resp) {
 if (resp.substr(0, 3) == 'OK:') {
 var buildingInstanceId = resp.substr(3, resp.length);
 alert("Building purchase was successful. The instance ID is " + buildingInstanceId);
 } else {
 alert("An error occurred while trying to purchase the building!")
 }
});

However, before we purchase the building, we need to check whether the clicked tile
or any surrounding tiles are being occupied by another building or BuildPortion. To
control this step, we’re going to use a method of the Game object called Game.checkIf
TileIsBusy():

Game.prototype.checkIfTileIsBusy = function(obj, row, col) {
 for (var i = (row + 1) - obj.tileWidth; i <= row; i++) {
 for (var j = (col + 1) - obj.tileHeight; j <= col; j++) {

120 | Chapter 5: Connecting the Game to People

 if (this.tileMap[i] != undefined && this.tileMap[i][j] != null) {
 return true;
 }
 }
 }

 return false;
}

Now that we have all the necessary tools to handle our events appropriately, all that
we need to do to add the final implementation of the Game.prototype.handleMouse
Down function:

Game.prototype.handleMouseDown = function(e) {
 e.preventDefault();

 switch (Tools.current) {
 case Tools.BUILD:
 if (this.buildHelper.current != null) {
 var pos = this.translatePixelsToMatrix(e.clientX, e.clientY);

 // Can we place the element on the grid?
 if (!this.checkIfTileIsBusy(this.buildHelper.current, pos.row, pos.col)) {

 var obj = this.buildHelper.current;
 var t = this;

 var processResponse = function(resp) {
 if (resp.substr(0, 3) == 'OK:') {
 var buildingInstanceId = resp.substr(3, resp.length);
 for (var i = (pos.row + 1) - obj.tileWidth; i <= pos.row; i++) {
 for (var j = (pos.col + 1) - obj.tileHeight; j <= pos.col; j++) {
 t.tileMap[i] = (t.tileMap[i] == undefined) ? [] : t.tileMap[i];

 t.tileMap[i][j] = (i === pos.row && j === pos.col) ? obj :
new BuildingPortion(obj.buildingTypeId, i, j);
 }
 }
 } else {
 alert("An error occurred while trying to purchase the building!")
 }

 t.draw();
 }

 purchase(obj.buildingTypeId, pos.row, pos.col, processResponse);
 } else {
 alert("Unable purchase building on this position");
 }
 }

 break;
 case Tools.MOVE:
 this.dragHelper.active = true;
 this.dragHelper.x = e.clientX;

The Path to the Final Game | 121

 this.dragHelper.y = e.clientY;
 break;
 case Tools.ZOOM_IN:
 this.zoomIn();
 break;
 case Tools.ZOOM_OUT:
 this.zoomOut();
 break;
 case Tools.DEMOLISH:

 var pos = this.translatePixelsToMatrix(e.clientX, e.clientY);

 if (this.tileMap[pos.row] != undefined && this.tileMap[pos.row][pos.col] !=
undefined) {
 var obj = this.tileMap[pos.row][pos.col];

 // Not a building, a building portion. Grab the reference to the original
building.
 if (obj instanceof BuildingPortion) {
 pos.row += obj.x;
 pos.col += obj.y;
 obj = this.tileMap[pos.row][pos.col];
 }

 var t = this;
 var processResponse = function(resp) {
 if (resp.substr(0, 2) == 'OK') {
 // Check for sorrounding pixels and destroy BuildingPortions too.
 for (var i = (pos.row + 1) - obj.tileWidth; i <= pos.row; i++) {
 for (var j = (pos.col + 1) - obj.tileHeight; j <= pos.col; j++) {
 t.tileMap[i][j] = null;
 }
 }
 } else {
 alert("A problem occurred while trying to demolish this building");
 }

 t.draw();
 }

 demolish(pos.row, pos.col, processResponse);
 }

 break;
 }

 this.draw();
}

Although we can now purchase or demolish buildings (adding or deleting building
instances in the database under our user), the account balance always remains the same.
In order to keep it updated, we’ll implement a function called refresh() that will keep
getting called every 15 seconds, updating the account balance in the process. On the

122 | Chapter 5: Connecting the Game to People

server side, sync.php will also be in charge of calculating the current profits being gen-
erated by the buildings:

function refresh() {
 var processResponse = function(resp) {
 if (resp.substr(0, 5) == 'ERROR') {
 alert("A problem occurred while trying to sync with the service.");
 } else {
 var balanceContainer = document.getElementById('balance');

 var currBalance = parseInt(balanceContainer.innerHTML);
 var balance = parseInt(resp.substr(3, resp.length));
 balanceContainer.innerHTML = balance;
 }
 }

 sync(processResponse);
 setTimeout(function() {
 refresh(ui);
 }, 15000);
}

A screenshot of the game at this point can be seen in Figure 5-4.

Figure 5-4. A working resort, complete with trees

The Path to the Final Game | 123

Polishing the Game
The finishing touches are the things that makes a certain product (in our case, a game)
feel special. Although the game so far is functional, it still feels plain, boring, and
discouraging.

One method that we can use to make our game feel more alive is adding dynamic objects
floating around or over the city, like clouds. Instead of using canvas to display them
(which means that we would need to repaint everything every time the clouds move),
we can accomplish the same effect by using CSS3 animations.

CSS3 animations allow us to modify one or multiple CSS properties over a number of
keyframes in the following way:

@moveToRight {
 0% {
 left: 0px
 }

 50% {
 left: 100px
 }

 100% {
 left: 200px
 }
}

Once we have defined the animation keyframes (in this case, the element will start on
position left: 0px and will move to position left: 200px), we need to define other
animation properties such as:

animation-timing-function
Controls how each keyframe transitions to the next. Possible values are ease,
linear, ease-in, ease-out, ease-in-out, cubic-bezier(number, number, number,
number).

animation-name
Specifies the name of our animation (in this case, it would be moveToRight).

animation-duration
Controls how long the entire animation should last.

animation-iteration-count
Accepts either an integer value or “infinite” and controls how many times our
animation should be played.

animation-direction
Allows us to define the “direction” of the animation. The possible values are
normal (always animates from keyframe 0 to keyframe 100) or alternate (animates
from keyframe 0 to keyframe 100, and then from keyframe 100 to keyframe 0).

124 | Chapter 5: Connecting the Game to People

The entire list can be found in the official W3C Working Draft at http://www.w3.org/
TR/css3-animations/.

Although in our case the animation will occur only in fixed positions, you can easily
create the same effect using JavaScript and random variables or variables based on the
current grid scroll position of our game:

@-webkit-keyframes moveFromLeftToRight {
 0% {
 -webkit-transform: translateX(-5000px) translateY(50px) translateZ(0px);
 }
 50% {
 -webkit-transform: translateX(0px) translateY(50px) translateZ(0px);
 }
 100% {
 -webkit-transform: translateX(5000px) translateY(50px) translateZ(0px);
 }
}

@-moz-keyframes moveFromLeftToRight {
 0% {
 -moz-transform: translateX(-5000px) translateY(50px);
 }
 50% {
 -moz-transform: translateX(0px) translateY(50px);
 }
 100% {
 -moz-transform: translateX(5000px) translateY(50px);
 }
}

@-ms-keyframes moveFromLeftToRight {
 0% {
 -ms-transform: translateX(-5000px) translateY(50px);
 }
 50% {
 -ms-transform: translateX(0px) translateY(50px);
 }
 100% {
 -ms-transform: translateX(5000px) translateY(50px);
 }
}

@-o-keyframes moveFromLeftToRight {
 0% {
 -o-transform: translateX(-5000px) translateY(50px);
 }
 50% {
 -o-transform: translateX(0px) translateY(50px);
 }
 100% {
 -o-transform: translateX(5000px) translateY(50px);
 }
}

Polishing the Game | 125

http://www.w3.org/TR/css3-animations/
http://www.w3.org/TR/css3-animations/

@keyframes moveFromLeftToRight {
 0% {
 transform: translateX(-5000px) translateY(50px);
 }
 50% {
 transform: translateX(0px) translateY(50px);
 }
 100% {
 transform: translateX(5000px) translateY(50px);
 }
}

div.cloud {
 position: absolute;
 top: 0px;
 left: 0px;
 z-index: 500;
 background: transparent url(../../img/spritesheet.png) no-repeat −10px −257px;
 width: 566px;
 height: 243px;

 pointer-events: none;

 -webkit-animation-timing-function: linear;
 -webkit-animation-name: moveFromLeftToRight;
 -webkit-animation-duration: 2s;
 -webkit-animation-iteration-count: infinite;
 -webkit-animation-direction: alternate;

 -moz-animation-timing-function: linear;
 -moz-animation-name: moveFromLeftToRight;
 -moz-animation-duration: 60s;
 -moz-animation-iteration-count: infinite;
 -moz-animation-direction: alternate;

 -ms-animation-timing-function: linear;
 -ms-animation-name: moveFromLeftToRight;
 -ms-animation-duration: 60s;
 -ms-animation-iteration-count: infinite;
 -ms-animation-direction: alternate;

 -o-animation-timing-function: linear;
 -o-animation-name: moveFromLeftToRight;
 -o-animation-duration: 60s;
 -o-animation-iteration-count: infinite;
 -o-animation-direction: alternate;

 animation-timing-function: linear;
 animation-name: moveFromLeftToRight;
 animation-duration: 60s;
 animation-iteration-count: infinite;
 animation-direction: alternate;
}

This produces a result similar to Figure 5-5.

126 | Chapter 5: Connecting the Game to People

Figure 5-5. Clouds floating over the city

Another pleasant effect that would help make the scene more credible is the addition
of shadows. There are several techniques and algorithms to project shadows in a two-
dimensional plane; however, in most cases they need one or multiple light sources,
which also requires us to perform multiple calculations, especially if we have multiple
objects (which we do).

Because the objects on the scene will be static most of the time, we could efficiently
either:

• Draw a shadow texture for each individual building

• Generate the shadow ourselves, dynamically

In this case, we’re going to use the second approach, as it gives us the possibility of
defining a pseudo-light source or controlling the intensity of the shadow dynamically.

This method consists of drawing a silhouette of the original building, then skewing and
rotating it while at the same time reducing the alpha value. For example, if we painted
our textures with light coming from the southeast, the shadow should be projected to
the northwest. If we painted them with a light source coming from the southwest, the
shadow would be projected to the northeast, and so on. Figure 5-6 will give you a better
idea of what we’re trying to do.

Polishing the Game | 127

Figure 5-6. Adding a silhouette to a building

To implement this approach, we’re going to resort to two HTML5 Canvas functions
seen before, getImageData() and putImageData(), and we’re going to build the func-
tionality directly into the sprite object.

First, we will modify our Sprite class and add an empty property:

this.shadow = null;

Next, modify the draw() method to optionally accept a drawShadow parameter, a boolean
indicating whether we want to draw a shadow to the sprite that we’re drawing. A
subroutine will check whether this.shadow is null and do all the necessary processing
to convert the image to an image array that we can later use by calling putImage
Data(). The result of the silhouette effect will be stored in our this.shadow property so
that the next time that we need to use it we don’t need to do all the image preprocessing
again. Be advised though, that this method is less efficient than using a premade image
like our shadow; however, it gives us greater control and flexibility:

128 | Chapter 5: Connecting the Game to People

if (this.shown) {
 if (drawShadow !== undefined && drawShadow) {
 if (this.shadow === null) { // Shadow not created yet
 var sCnv = document.createElement("canvas");
 var sCtx = sCnv.getContext("2d");

 sCnv.width = this.width;
 sCnv.height = this.height;

 sCtx.drawImage(this.spritesheet,
 this.offsetX,
 this.offsetY,
 this.width,
 this.height,
 0,
 0,
 this.width * this.zoomLevel,
 this.height * this.zoomLevel);

 var idata = sCtx.getImageData(0, 0, sCnv.width, sCnv.height);

 for (var i = 0, len = idata.data.length; i < len; i += 4) {
 idata.data[i] = 0; // R
 idata.data[i + 1] = 0; // G
 idata.data[i + 2] = 0; // B
 }

 sCtx.clearRect(0, 0, sCnv.width, sCnv.height);
 sCtx.putImageData(idata, 0, 0);

 this.shadow = sCtx;
 }

 c.save();
 c.globalAlpha = 0.1;
 var sw = this.width * this.zoomLevel;
 var sh = this.height * this.zoomLevel;
 c.drawImage(this.shadow.canvas, this.posX, this.posY - sh, sw, sh * 2);
 c.restore();
 }

 c.drawImage(this.spritesheet,
 this.offsetX,
 this.offsetY,
 this.width,
 this.height,
 this.posX,
 this.posY,
 this.width * this.zoomLevel,
 this.height * this.zoomLevel);
}

The end result looks like Figure 5-7.

Polishing the Game | 129

Figure 5-7. Trees with shadows

Adding a Social Networking Layer Using Facebook
Adding a social layer to our game using Facebook can be done easily by filling out some
forms and implementing just a few lines of code. First, we’ll need to create a new Face-
book application by going to http://www.facebook.com/developers/ and clicking on the
Create New App button, which takes you to a Facebook Application Creation wizard
that will allow us to integrate our game with Facebook.

Once you click the Create New App button, you’ll see something like Figure 5-8 asking
you to name your app.

Just type any name you want (which will be the application title seen by your users
when they install the game), agree to the Terms of Service and click Create App. I named
mine Tourist Resort. This name doesn’t have to be unique, so feel free to name your
game Tourist Resort as well.

130 | Chapter 5: Connecting the Game to People

http://www.facebook.com/developers/

Figure 5-8. Creating an application in Facebook

The next step, shown in Figure 5-9, is a security check that will ask you to type the text
inside the captcha.

Figure 5-9. Next step: captcha

When you click Submit, depending on your account information and/or location,
Facebook may ask you to verify your account by associating your telephone number
or a valid credit card registered to your name.

Once you’ve completed these steps, you will be taken to your application management
page, which will let you modify your contact information, application name and de-
scription, logo, and language, among other details.

We can integrate our application into the Facebook platform by presenting it either
within the Facebook page or as a standalone application that uses Facebook’s authen-
tication scheme, called Facebook Connect. Discussing all the different Facebook au-
thentication schemes are outside the scope of this book, so we will focus on how to
display the game within the Facebook site.

Adding a Social Networking Layer Using Facebook | 131

In order to provide an external site with the logged-in user’s authentication details,
Facebook uses a concept called a canvas—not related to the HTML5 Canvas—which
is nothing more than a 765-pixel-wide HTML iframe that loads our own site, passing
along several parameters to allow us to initiate a OAuth 2.0 authentication scheme that
can be done either on the server side or the client side (using JavaScript and XBFML).

This book focuses on implementing the server-side approach. For more
information on the different authentication schemes supported by the
Facebook platform, please refer to http://developers.facebook.com/docs/
authentication/.

To implement the server-side authentication scheme we’re using for our game, we need
to click on the Facebook Integration link on the left of our application management
page. The first panel, Core Settings, shows the information in Figure 5-10.

Figure 5-10. Key information for your apps

Take note of your specific Application ID and the Application Secret (partially obscured
in the figure) and download Facebook’s official PHP SDK: https://github.com/facebook/
php-sdk/.

Inside the Facebook Integration tab, we must specify two additional fields:

• The Canvas Page, which is a Facebook-hosted URL that will be accessed by our
users when they click on our application

• The Canvas URL, which is the URL hosting our application

An example is shown in Figure 5-11.

Figure 5-11. Defining your canvas

132 | Chapter 5: Connecting the Game to People

http://developers.facebook.com/docs/authentication/
http://developers.facebook.com/docs/authentication/
https://github.com/facebook/php-sdk/
https://github.com/facebook/php-sdk/

In a nutshell, when users access http://apps.facebook.com/tourist-resort, Facebook
will automatically call our Canvas URL, passing some parameters to help with the
authentication.

Then, we just need to include the Facebook API files, make a new instance of the
Facebook object using our Application ID and Application Secret, and we’ll get access
to the user’s information:

<?php
 require 'facebook/src/facebook.php';

 $fb = new Facebook(array(
 'appId' => '<YOUR_APPLICATION_ID>',
 'secret' => '<YOUR_APPLICATION_SECRET>',
));

 $user = $fb->getUser();

 echo '<pre>';
 print_r($user);
 echo '</pre>';
?>

If the user is not logged in to Facebook or hasn’t authorized our application yet, the
output of the $user variable will be zero. A more reliable method to detect this occur-
rence is to use the approach taken in example.php, which is included in the Facebook
PHP SDK:

<?php
if ($user) {
 try {
 $user_profile = $fb->api('/me');
 } catch (FacebookApiException $e) {
 $user = null;
 }
}
?>

$fb->api('/me') tries to fill the $user_profile variable by querying Facebook’s Graph
API for your own user (for more information about the Facebook Graph API, see http:
//developers.facebook.com/docs/reference/api/) and throws an exception if an error
occurs.

In order to let the user sign in to our application using her Facebook credentials, add
the following lines:

<?php
$loginUrl = $fb->getLoginUrl();
?>
<a href="<?=$loginUrl?>">Sign In

Adding a Social Networking Layer Using Facebook | 133

http://apps.facebook.com/tourist-resort
http://developers.facebook.com/docs/reference/api/
http://developers.facebook.com/docs/reference/api/

When the user clicks Sign In, Facebook will show the authorization dialog in
Figure 5-12.

Figure 5-12. Will the user grant permission?

Once the user decides to allow our application to access her data, the page will be
reloaded; this time, the $user variable will be filled with the Facebook User ID and the
$user_profile variable will be filled with the response to the Graph API query /me,
which is returned as a JSON object.

By default, Facebook will ask for only the “basic user information,” which includes
things such as the user’s name, last name, Facebook User ID, location, interests, gender,
and so on. If we want to ask for additional permissions—for example, to get access to
his email address and friends, and to be able to publish messages on his activity stream
—we need to modify the $fb->getLoginUrl() call in the following way:

<?php
$loginUrl = $fb->getLoginUrl(array(
 "scope" => "email, publish_stream, friends_about_me"
));
?>

The entire list of permissions can be found at the following URL: http:
//developers.facebook.com/docs/authentication/permissions/.

After we modify the permissions, our new authorization window will look like
Figure 5-13.

134 | Chapter 5: Connecting the Game to People

http://developers.facebook.com/docs/authentication/permissions/
http://developers.facebook.com/docs/authentication/permissions/

Figure 5-13. Will the user grant even more permissions?

If the user decides to allow our game to access their data, the $user_profile variable
will include an email parameter that we can use to automatically register the user in
our own database.

Once we have all the information, we can simply do a one-to-one map of the Facebook
User ID with a user ID in our game to log the user in automatically when he or she
connects via Facebook.

For more information, refer to the Facebook Developer website: http://developers.face
book.com/docs/guides/canvas/.

Adding a Social Networking Layer Using Facebook | 135

http://developers.facebook.com/docs/guides/canvas/
http://developers.facebook.com/docs/guides/canvas/

About the Author
Andrés Pagella is an accomplished software developer with more than 10 years of pro-
fessional experience, and lives in Capital Federal, Argentina. He has worked on the
design and the implementation of several high-traffic websites in Argentina. He
currently works as the Chief Technical Officer of Minor Studios Argentina S.R.L.,
developing a social game design tool called Atmosphir.

	Table of Contents
	Preface
	The Rise of HTML5
	What You Need to Know
	Code Examples
	Development and Debugging Tools
	Notes on Game Design
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Graphics Foundations: Canvas and
 Sprites
	Working with the canvas Object
	Creating Smooth Animations
	Working with Sprites
	What’s at that Pixel?
	Dealing with Transparency

	Choosing a Rendering Method for Our Graphics

	Chapter 2. Making It Isometric
	Chapter 3. Interface Considerations
	GUI Design and Interaction in Web Games
	Implementing the GUI

	Chapter 4. HTML5 Sound and Processing Optimization
	Adding Sound with the Audio Element
	Managing Computationally Expensive Work with the Web Workers API
	Local Storage and Session Storage

	Chapter 5. Connecting the Game to People
	Cheat Prevention and Server-Side Operations
	The Path to the Final Game
	Polishing the Game
	Adding a Social Networking Layer Using Facebook

